• Title/Summary/Keyword: Zero-point energy

Search Result 118, Processing Time 0.024 seconds

Research on Carried-Based PWM with Zero-Sequence Component Injection for Vienna Type Rectifiers

  • Ma, Hui;Feng, Mao;Tian, Yu;Chen, Xi
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.560-568
    • /
    • 2019
  • This paper studies the inherent relationship between currents and zero-sequence components. Then a precise algorithm is proposed to calculate the injected zero-sequence component to control the DC-Link neutral-point voltage balance, which can result in a more efficient and flexible neutral point voltage balance with a desirable performance. In addition, it is shown that carried-based PWM with the calculated zero-sequence component scheme can be equivalent to space-vector pulse-width modulation (SVPWM). Based on the proposed method, the optimal zero-sequence component of the feasible modulation indices is analyzed. In addition, the unbalanced load limitation of the DC-Link neutral-point voltage balance control is also revealed. Simulation and experimental results are shown to verify the validity and practicality of the proposed algorithm.

Analysis of residential natural gas consumption distribution function in Korea - a mixture model

  • Kim, Ho-Young;Lim, Seul-Ye;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.36-41
    • /
    • 2014
  • The world's overall need for natural gas (NG) has been growing up fast, especially in the residential sector. The better the estimation of residential NG consumption (RNGC) distribution, the better decision-making for a residential NG policy such as pricing, demand estimation, management options and so on. Approximating the distribution of RNGC is complicated by zero observations in the sample. To deal with the zero observations by allowing a point mass at zero, a mixture model of RNGC distributions is proposed and applied. The RNGC distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household RNGC survey data collected in Korea. The mixture model can easily capture the common bimodality feature of the RNGC distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-expenditure significantly varies with some variables. Finally, the goodness-of-fit test suggests that the data are well represented by the mixture model.

Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots (2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성)

  • Shin, Hyeok-Ki;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

Nuclear Structure Studies with Low Temperature Technique (I)

  • Young Koh;Park, Won-Seok;Park, Chang-Kyu;Shin, Hee-Sung;Song, Tae-Yung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.669-674
    • /
    • 1996
  • The theory of quantum mechanics states that for any system there are a set of discrete physical states, quantum states, which corresponds a particular energy level of the system. The lowest energy the system can have, corresponding to its ground state, is not necessarily zero, but depends only on the precise microscopic nature of the system under consideration. At the absolute zero of temperature all systems will be in their lowest energy state (zero point energy) and as the system is warmed from OK, the higher energy states become occupied. The probability of occupancy of the excited states relative to that of the ground state is proportional to the absolute temperature. Therefore we can obtain nuclear dipole and quadrupole moment very accurately at ultra low temperature (<15mk) by NMR and from the destruction of anisotropy. The former is called LTNO/NMR and the latter is called LTNO (Low Temperature Nuclear Orientation). In this paper we discuss and introduce only an experimental apparatus with results of cooling power test, a helium dilution refrigerator, which can reache 8mK, and an actual technique for the experiment, a theory and results will be presented in another papers.

  • PDF

New Strategy for Eliminating Zero-sequence Circulating Current between Parallel Operating Three-level NPC Voltage Source Inverters

  • Li, Kai;Dong, Zhenhua;Wang, Xiaodong;Peng, Chao;Deng, Fujin;Guerrero, Josep;Vasquez, Juan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.70-80
    • /
    • 2018
  • A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC buses, that are operating in parallel. First, an equivalent model of ZSCC in a three-phase three-level NPC inverter paralleled system is developed. Second, on the basis of the analysis of the excitation source of ZSCCs, i.e., the difference in common mode voltages (CMVs) between paralleled inverters, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can be eliminated effectively under steady and dynamic states. Moreover, the proposed strategy exhibits the advantage of not requiring carrier synchronization. It can be utilized in inverters with different types of filter.

Pulse Density Modulated Zero Voltage Soft-Switching High-Frequency Inverter with Single Switch for Xenon Gas Dielectric Barrier Discharge Lamp Dimming

  • Sugimura, Hisayuki;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • This paper presents soft switching zero voltage switching high frequency inverter for rare gas fluorescent lamp using dielectric-barrier discharge phenomenon. The simple high-frequency inverter can completely achieve stable zero voltage soft switching (ZVS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZVS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this high frequency Inverter are illustrated as compared with computer simulation results and experimental ones. Its light dimming characteristics due to power regulation scheme are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proven from the practical point of view.

  • PDF

A study on the relationship between the existing building load for the advance ZEB certification system (ZEB 인증제 고도화를 위한 기존 건축물 부하별 연관성 연구)

  • Lee, Hangju;Maeng, Sunyoung;Kim, Insoo;Ahn, Jong-Wook
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • In accordance with the implementation of the Zero Energy Building Certification System, it for the activation and expansion of the private sector is being steadily upgraded. Also The government has set up a step-by-step mandatory roadmap until it is expanded to the private sector, starting with the public sector. We analyzed the energy requirements of existing buildings from 2016 to 2017 and the by load relationships of major factor. Of the existing buildings, 714 buildings in central and southern areas excluding residential buildings such as apartments and officetels were classified and their primary energy requirements were analyzed. As new design technologies are applied, the demand for energy from the passive side is steadily declining. In addition, there is a need to interpret various methods to improve the zero energy building certification standard in the point that the zero energy building pilot project is continuously carried out in relation to the activation of renewable energy supply.

Ammonia-fueled Solid Oxide Fuel Cell Recirculation Systems for Power Generation (암모니아 활용 고체산화물 연료전지 재순환 발전 시스템)

  • JIN YOUNG PARK;THAI-QUYEN QUACH;JINSUN KIM;YONGGYUN BAE;DONGKEUN LEE;YOUNGSANG KIM;SUNYOUP LEE;YOUNG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • Ammonia is drawing attention as carbon free fuel due to its ease of storage and transportation compared to hydrogen. This study suggests ammonia fueled solid oxide fuel cell (SOFC) system with electrochemical hydrogen compressor (EHC)-based recirculation. Performance of electrochemical hydrogen pump is based on the experimental data under varying hydrogen and nitrogen concentration. As a result, the suggested system shows 62.04% net electrical efficiency. The efficiency is 10.33% point higher compared to simple standalone SOFC system (51.71%), but 0.02% point lower compared to blower-based recirculation system (62.06%). Further improvement in the EHC-based SOFC recirculation system can be achieved with EHC performance improvement.

LINEARIZED MODELLING TECHNIQUES

  • Chang, Young-Woo;Lee, Kyong-Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • For analyzing systems of multi-variate nonlinear equations, the linearized modelling techniques are elaborated. The technique applies Newton-Raphson iteration, partial differentiation and matrix operation providing solvable solutions to complicated problems. Practical application examples are given in; determining the zero point of functions, determining maximum (or minimum) point of functions, nonlinear regression analysis, and solving complex co-efficient polynomials. Merits and demerits of linearized modelling techniques are also discussed.

  • PDF