• Title/Summary/Keyword: Zero voltage vector

Search Result 98, Processing Time 0.037 seconds

A Novel PWM Swiching Technique for Conducted EMI Reduction in Vector-Controlled Induction Motor Drive (유도전동기 벡터제어 시스템의 EMI저감을 위한 새로운 PWM기법)

  • Bae, W.R.;Lee, W.C.;Yu, J.S.;Kim, L.H.;Hahm, N.K.;Won, C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.321-324
    • /
    • 2005
  • This paper describes the application of newly developed conducted EMI reduction technique of SVPWM in induction motor drive. The newly developed common mode voltage reduction SVPWM technique doesn't any zero-voltage vector states for inverter control. Hence it can restrict the common mode voltage better than conventional PWM technique. The proposed technique is verified through simulation and experimental results. And by applying vector-controled system, the proposed technique have superior ability of reducing EMI and equal control performance comparing conventional SVPWM technique.

  • PDF

Switching Noise Reduction of Induction Motor by a Two-Phase RCD-PWM Technique with Dual Zero Vector Modes (듀얼 영 벡터 모드를 갖는 2상 RCD-PWM기법에 의한 유도 모터의 스위칭 소음저감)

  • Oh Seung-Yeol;Wi Seog-Oh;Jung Young-Gook;Lim Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.525-535
    • /
    • 2004
  • In this paper, a two-phase DZRCD(Dual Zero Vector Modes RCD) technique is proposed to develope the problem of a conventional two-phase RCD-PWM (Random Centered Distribution PWM) which gives the power spectra of narrow band range in the high modulation index (M). In the proposed DZRCD technique, the zero vector $V_0$ is selected as $V_0$(111) for M$\geqq$0.8. Also, $V_0$ is selected as $V_0$(000) for the modulation indices < 0.8. For the unplementation of the proposed method, a 16-bit micro-controller Cl67 was used and the experiments were conducted with the 1.5kw induction motor under no load condition. The experimental results show that the voltage / current spectra is spread to a wide band range, and the switching noise of motor is reduced by the proposed method compared to the conventional random operation.

An Overmodulation Strategy for SVPWM Inverter Using Pole Voltage (폴전압을 이용한 SVPWM 인버터의 과변조 기법)

  • 韓 大 雄;金 相 勳
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.149-157
    • /
    • 2002
  • In this paper, a novel overmodulation strategy for space-vector PWM(SVPWM) inverters to utilize dc link voltage fully Is presented. The proposed strategy uses the concept of SVPWM based on the zero sequence signal(offset voltage) injection principle. So, by modifying the pole voltage simply, the linear control of inverter output voltage over the whole overmodulation range can be achieved easily The proposed strategy is so simple that its practical implementation is easy. The validity of the proposed strategy is confirmed by the experimental results.

Analysis of Capacitor Voltage and Boost Vector in Neutral-Point-Clamped and H-Bridge Converter (NPC와 B-Bridge 컨버터의 부스트 벡터와 커패시터전압의 해석)

  • Kim Jung-Kyun;Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.489-493
    • /
    • 2002
  • This paper discover another boost vectors in high modulation index In steady states, modulation index of converter operation is normally $0.7\~0.8[p.u]$. Even though zero vectors are not imposed, DC-Link voltage is constant because 3-level boost convert has another boost vectors. and this paper proposes the analysis and the comparison for NPC and H-Bridge converter. It proposed the calculation method for the voltage ripple and charging current of each capacitor and deals with voltage balance problems of each link capacitor they are associated with the switching state, the position of reference voltage vector. Simulation and analysis are used in order to prove validity of the proposed methods.

  • PDF

Carrier Comparison PWM Method of Vienna Rectifier for Reduction of Common Mode Voltage (비엔나 정류기의 공통모드 전압 저감이 가능한 캐리어 비교 PWM 기법)

  • Lee, Dong-Hyun;Choi, Won-Il;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.126-133
    • /
    • 2016
  • This paper proposes a new PWM method to reduce the common mode voltage change in three-level Vienna rectifier. This new proposed PWM method uses medium voltage vector for the three-level Vienna rectifier to determine the sum of three-phase voltage zero, and the common mode voltage variation is decreased. Using the carrier comparison method, the switching function generator for three-level Vienna rectifier has been proposed. The effects of the proposed PWM method have been verified through simulation using the PSIM.

Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1244-1255
    • /
    • 2017
  • The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

Suppression of Circulating Current in Parallel Operation of Three-Level AC/DC Converters (병렬 3레벨 AC/DC 전력변환 시스템의 영상분 순환전류 억제)

  • Son, Young-Kwang;Chee, Seung-Jun;Lee, Younggii;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.312-319
    • /
    • 2016
  • Zero-sequence Circulating Current (ZSCC) flows inevitably in parallel converters that share common DC and AC sources. The ZSCC commonly flowing in all converters increases loss and decreases the overall capacity of parallel converters. This paper proposes a simple and effective ZSCC suppression method based on the Space Vector PWM (SVPWM) with the ZSCC controller. The zero-sequence voltage for the proposed SVPWM is calculated on the basis of the grid voltage and not on the phase voltage references. The limit of the linear modulation region of the converters with the proposed method is analyzed and compared with other methods, thereby proving that the limit of the region can be extended with the proposed method. The effectiveness of the proposed method has been verified through the experimental setup comprising four parallel three-level converters. The ZSCC is confirmed to be well suppressed, and the linear modulation region is extended simultaneously with the proposed method. Moreover, the proposed control method does not require any communication between the converters to suppress the ZSCC unlike other conventional methods.

A New Low Loss Quasi Parallel Resonant DC-Link Inverter with Variable Lossless Zero Voltage Duration (무손실 가변 영전압 구간을 갖는 새로운 저손실 준 병렬공진 직류-링크 인버터)

  • 권경안;김권호;최익;정용채;박민용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.8-18
    • /
    • 1997
  • In this paper, a New Low Loss Quasi-Parallel Resonant DC-Link(NLQPRDCL) Inverter which shows highly improved PWM capability, low loss characteristic and low voltage stress is presented. A method to minimize freewheeling interval, which is able to largely decrease DC-link operation losses and to steadily guarantee soft switching in the wide operation region is also proposed. In addition, lossless control of zero voltage duration of DC-link makes the proposed inverter maintain the advanced PWM capability even under a very low modulation index. Experiment and simulation were performed to verify validity of the proposed inverter topology.

Design of High-Efficiency Full-Bridge Converter and Inverter for ESS (ESS용 고효율 풀브리지 컨버터 및 인버터 설계)

  • Jung, Jae-Hun;Lee, Chang-woo;Choi, Jin-ku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.685-688
    • /
    • 2015
  • A phase-shift full-bridge converter is widely used conventional converter. If the input power change in the variation of the output voltage, there is a time interval freewheeling according to a duty change. This is a factor of reducing the efficiency. In this paper, we propose a method for improving the efficiency of the converter/inverter systems that require high efficiency in the ESS. The proposed method was used for the duty control for solving the fail problem ZVS(Zero Voltage Switching) in Freewheeling interval. The proposed method was verified by experiments.

  • PDF

EMI Noise Reduction with New Active Zero State PWM for Integrated Dynamic Brake Systems

  • Baik, Jae-Hyuk;Yun, Sang-Won;Kim, Dong-Sik;Kwon, Chun-Ki;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.923-930
    • /
    • 2018
  • Based on the application of an integrated dynamic brake (IDB) system that uses a PWM inverter fed-AC motor drive to operate the piston, a new active zero state PWM (AZSPWM) is proposed to improve the stability and reliability of the IDB system by suppressing the conducted electro-magnetic interference (EMI) noise under a wide range of load torque. The new AZSPWM reduces common-mode voltage (CMV) by one-third when compared to that of the conventional space vector PWM (CSVPWM). Although this method slightly increases the output current ripple by reducing the CMV, like the CSVPWM, it can be used within the full range of the load torque. Further, unlike other reduced common-mode voltage (RCMV) PWMs, it does not increase the switching power loss. A theoretical analysis is presented and experiments are performed to demonstrate the effectiveness of this method.