• Title/Summary/Keyword: Zero steady-state error

Search Result 89, Processing Time 0.023 seconds

Analysis of Proportional Control for Grid Connected Inverter With LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.247-249
    • /
    • 2008
  • There are many types of grid-connected inverter controllers; Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. However, SRF-based controller has a complex algorithm to apply in real application such as digital processor. Resonant controller is also reduced zero-steady state error, but its transfer function has a high order. In this paper, a simple proportional control is applied for grid connected inverter with LCL filter. LCL filter is a third order system. Applying a simple proportional controller is not increased the order of closed loop transfer function. By this technique, the single phase model is easily obtained. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

Improvement of Steady State Response Using PI+Double Integral Controller (비례적분+이중적분 제어기를 이용한 정상상태 응답 개선)

  • Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

River Pollution Control Using Hierarchical Optimization Technique (계층적 최적화 기법을 이용한 강의 수질오염 제어)

  • 김경연;감상규
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.71-80
    • /
    • 1995
  • A discrete state space model for a multiple-reach river system is formulated using the dynamics of biochemical oxygen demand(BOD) and dissolved oxygen(DO). A hierarchical optimization technique, which is applicable to large-scale systems with time-delays in states, is also described to control stream quality in a river as an optimal manner based on the interaction prediction method. The steady state tracking error of the proposed method is determined analytically and a necessary and sufficient condition on which a constant target tracking problem has zero steady-state error is derived. Computer simulations for the river pollution model illustrate the algorithm.

  • PDF

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

Analysis of Decoupling Method in DQ Transform-based for Grid Connected Inverter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.924-925
    • /
    • 2008
  • There are many types of grid-connected inverter controllers, PI controller based is the most popular methods. But, a common PI control is produced zero-steady state error and phase delay in sinusoidal reference. Synchronous reference frame or DQ transform based controller is capable for reducing both of zero-steady state error and phase delay is. But DQ transform based controller has cross-coupling component which difficult to analyze the system in single phase model. In this paper, to obtained single phase model of the system, DQ transform based controller is analyzed in two techniques. The first is by neglecting cross-coupling. The second is eliminated cross-coupling component by decoupling method. By these two techniques, single phase model is obtained. Then, the single phase model is analyzed to evaluate its performance in stability and frequency response, through Root Locus and Bode diagram, respectively. MATLAB and PSIM simulation is used to verify the analysis. Simulation result is shown; cross-coupling component has no significant influent to the controller.

  • PDF

Accurate Voltage Parameter Estimation for Grid Synchronization in Single-Phase Power Systems

  • Dai, Zhiyong;Lin, Hui;Tian, Yanjun;Yao, Wenli;Yin, Hang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1067-1075
    • /
    • 2016
  • This paper presents an adaptive observer-based approach to estimate voltage parameters, including frequency, amplitude, and phase angle, for single-phase power systems. In contrast to most existing estimation methods of grid voltage parameters, in this study, grid voltage is treated as a dynamic system related to an unknown grid frequency. Based on adaptive observer theory, a full-order adaptive observer is proposed to estimate voltage parameters. A Lyapunov function-based argument is employed to ensure that the proposed estimation method of voltage parameters has zero steady-state error, even when frequency varies or phase angle jumps significantly. Meanwhile, a reduced-order adaptive observer is designed as the simplified version of the proposed full-order observer. Compared with the frequency-adaptive virtual flux estimation, the proposed adaptive observers exhibit better dynamic response to track the actual grid voltage frequency, amplitude, and phase angle. Simulations and experiments have been conducted to validate the effectiveness of the proposed observers.

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.