• 제목/요약/키워드: Zero speed

검색결과 545건 처리시간 0.025초

위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구 (A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter)

  • 조한진;이원철;이상석;김태환;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

차세대 고속 전철용 Battery Charger 에 관한 연구 (A Study on the Battery Charger for Next Generation High Speed Train)

  • 정한정;이원철;이상석;백진성;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

대용량 데이터의 전송 효율 및 기록 성능 향상을 위한 Zero Copy 기술 적용에 관한 연구 (A Study on the Application of Zero Copy Technology to Improve the Transmission Efficiency and Recording Performance of Massive Data)

  • 송민규;김효령;강용우;제도흥;위석오;이성모;김승래
    • 한국전자통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1133-1144
    • /
    • 2021
  • Zero-copy는 메모리 무복사로도 불리는 기술로서 이에 대한 사용을 통해 사용자 영역과 커널 영역 간 컨텍스트 스위칭을 줄여 CPU의 부하를 최소화할 수 있다. 하지만 이 기술은 소규모의 랜덤한 파일을 전송하는 용도에 그치고, 대용량 파일 전송에는 아직 널리 활용되지 못하고 있다. 본 논문은 네트워크를 경유한 대용량 파일 처리에 있어서 Zero-copy의 실질적인 적용 방안에 대해 논의하고자 한다. 이를 위해 먼저 Zero-copy 기반으로 데이터를 전송, 저장할 수 있는 소규모 테스트베드 구축 및 프로그램을 개발하였다. 이후 세부 성능 평가를 통해 적용된 기술의 유용성을 세부 검증하고자 한다.

Characteristics of Propagating Tribrachial Flames in Counterflow

  • Ko, Young-Sung;Chung, Tae-Man;Chung, Suk-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1710-1718
    • /
    • 2002
  • The effect of fuel concentration gradient on the propagation characteristics of tribrachial (or triple) flames has been investigated experimentally in both two-dimensional and axisymmetric counterflows. The gradient at the stoichiometric location was controlled by the equivalence ratios at the two nozzles; one of which is maintained rich, while the other lean. Results show that the displacement speed of tribrachial flames in the two-dimensional counterflow decreases with fuel concentration gradient and has much larger speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large displacement speed can be attributed to the flame propagation with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient was estimated and the curvefit of the experimental data substantiates this limiting speed. As mixture fraction gradient approaches zero, a transition occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar results have been obtained for tribrachial flames propagating in axisymmetric counterflow.

고정자 전류 기반의 모델 기준 적응 제어를 애용한 유도전동기의 센서리스 벡터제어 (Sensorless Induction Motor Vector Control Using Stator Current-based MRAC)

  • 박철우;최병태;권우현
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.692-699
    • /
    • 2003
  • A novel rotor speed estimation method using Model Reference Adaptive Control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed mettled, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estmation error is unclear. Yet, in the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation and is robust to the parameters error In addition, the proposed method of offers a considerable improvement in the performance of a sensorless vector controller at a low speed. The superiority of the proposed method is verified by simulation and experiment in a low speed region and at a zero-speed.

대향류 유동장에서 삼지 화염 전파 특성에 관한 연구 (Characteristics of Propagating Tribrachial Flames in Counterflow)

  • 정태만;고영성;정석호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.422-427
    • /
    • 2000
  • Propagation characteristics of tribrachial flames have been investigated experimentally in both two-dimensional and axisymmetric counterflows. Mixture fraction gradient at stoichiometric location is controlled by varying equivalence ratios at the two nozzles, one of which maintains rich while the other lean premixture. Tribrachial flames propagating through these mixtures are investigated. The propagation speed of tribrachial flames in two-dimensional counterflow decreases with fuel concentration gradient and has much higher speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large propagation speed can be attributed to the tribrachial flame propagating with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient is estimated and extrapolated experimental results substantiate this limiting speed. As mixture fraction gradient approaches zero, a transition in propagation characteristics occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar behavior has been obtained for tribrachial flames propagating in axisymmetric counterflow.

  • PDF

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

수식모델의 직접토크제어에 의한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor by Direct Torque Control with Numerical Model)

  • 윤경국;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.830-836
    • /
    • 2012
  • Various control algorithms have been proposed for the speed-sensorless control for an induction motor. These control schemes are mainly based on the speed feedback with the flux and speed estimations. This paper proposes another method for the speed-sensorless control for an induction motor. The proposed scheme is based on the torque and flux compensation without speed estimations, in which the same controlled stator voltage is applied to both the induction motor and the numerical model so that the differences between torques and fluxes of the model and the induction motor may be compelled to give access to zero. The results of experiment show the effectiveness of the scheme.

1축 가변속 CMG를 장착한 부족구동 위성의 자세제어 특성 분석 (Analysis of Attitude Control Characteristics for an Underactuated Spacecraft Using a Single-Gimbal Variable-Speed CMG)

  • 진재현
    • 한국항공우주학회지
    • /
    • 제38권5호
    • /
    • pp.437-444
    • /
    • 2010
  • 본 논문에서는 한 개의 1축 가변속 CMG를 장착한 부족구동 위성의 자세제어 문제를 다루고 있다. 이러한 부족구동 위성의 경우, 전체 모멘텀이 영(zero)이 아니면 자세를 임의로 취할 수 없다. 위성을 안정화 시키려면 가변속 CMG가 위성의 모멘텀 방향으로 정렬해야 하기 때문이다. 4가지의 다른 장착형상을 고려하였으며, 각각에 대해 제어가능 모멘텀 영역을 분석하였다. 또한 각 형상에 대해 백스테핑 기법을 이용하여 안정한 자세제어 법칙을 제시하고 자세제어 특성을 비교하였다.

초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 설계 및 특성해석 (Design and Characteristic Analysis of Hybrid-Type Levitation and Propulsion Device for High-Speed Maglev Vehicle)

  • 조한욱;김창현;한형석;이종민;김봉섭;김동성;이영신
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.715-721
    • /
    • 2010
  • This paper deals with the design and characteristic analysis of electro-magnet/permanent-magnet (EM-PM) hybrid levitation and propulsion device for high-speed magnetically levitated (maglev) vehicle. The machine requires PMs with high coercive force in order to levitate the vehicle by only PMs, and propulsion force is supplied by long-stator linear synchronous motor (LSM). The advantages of this configuration are an increasing levitation airgap length and decreasing total weight of the vehicle, because of the zero-power levitation control. Several design considerations such as machine structure, manufacturing, and control strategy are described. Moreover, the levitation and propulsion device for high-speed maglev vehicle has been designed and analyzed usign the electromagnetic circuit and FE analysis. In order to verify the design scheme and feasibility of maglev application, 3-DOF static force test set is implemented and tested. The obtained experimental data using the static tester shows the validity of the design and analysis approaches.