• Title/Summary/Keyword: Zero speed

Search Result 549, Processing Time 0.022 seconds

Speed Control of the Motor in Automatic Control Using the Thyristor (싸이리스터에 의한 전동기 속도의 자동제어에 관한 연구)

  • Min Ho Park
    • 전기의세계
    • /
    • v.19 no.2
    • /
    • pp.6-11
    • /
    • 1970
  • For the variable speed in automatic control, this paper describes, at first, performance equations of an induction motor which has the free rotating stator. This motor with rotating stator has a speed control factor itself by equivalent variable frequency in stator side. Secondly, an additional invertor source on the rotor slip ring serves the purpose of improving the speed control factor. The advantages decribed above permit to control the speed continuosly from zero to maximum allowable speed with low energy of thyristor a feed-back device may be used for speed stabilization under variable load.

  • PDF

Finite impulse response design based on two-level transpose Vedic multiplier for medical image noise reduction

  • Joghee Prasad;Arun Sekar Rajasekaran;J. Ajayan;Kambatty Bojan Gurumoorthy
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.619-632
    • /
    • 2024
  • Medical signal processing requires noise and interference-free inputs for precise segregation and classification operations. However, sensing and transmitting wireless media/devices generate noise that results in signal tampering in feature extractions. To address these issues, this article introduces a finite impulse response design based on a two-level transpose Vedic multiplier. The proposed architecture identifies the zero-noise impulse across the varying sensing intervals. In this process, the first level is the process of transpose array operations with equalization implemented to achieve zero noise at any sensed interval. This transpose occurs between successive array representations of the input with continuity. If the continuity is unavailable, then the noise interruption is considerable and results in signal tampering. The second level of the Vedic multiplier is to optimize the transpose speed for zero-noise segregation. This is performed independently for the zero- and nonzero-noise intervals. Finally, the finite impulse response is estimated as the sum of zero- and nonzero-noise inputs at any finite classification.

Recent Trends on High-Speed Duobinary Transceiver Architecture (고속 듀오바이너리 송수신단 설계기술 동향)

  • Nam, Han-min;Kong, Bai-Sun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1038-1045
    • /
    • 2019
  • This paper describes high-speed duobinary transceiver design techniques which are widely used to increase data-rate despite limited channel bandwidth. At high data-rate, signal level is severely degraded as signal frequency becomes larger than the channel bandwidth. Mathematically, a duobinary signal has lower frequency components compared to a Non-Return-to-Zero signal for the same data-rate. Therefore, by using the duobinary signaling, the signal loss can be effectively reduced in physical channel environment as compared to the Non-Return-to-Zero signaling. The mathematical basis of duobinary signaling, and its applications to high-speed transceiver design are investigated in this paper.

High Frequency Inverter using Zero-Voltage-Switching (Zero-Voltage-Switching을 이용한 고주파 인버어터)

  • Sim, K.Y.;Moon, C.S.;Kim, D.H.;Kim, Y.H.;Yoo, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1133-1135
    • /
    • 1992
  • This paper describes high frequency inverter using zero voltage switching(ZVS). The ZVS operation is achieved to reduce the switching stress and switching loss under high speed switching. The proposed circuit configuration and performance are discussed. Its operation characteristics are evaluated through computer-aided simulation.

  • PDF

Direct Torque Control Method of Induction Machine with Constant Average Torque (일정한 토크 평균치를 가지는 유도전동기 직접토크제어기법)

  • Kim, Jeong-Ok;Jo, Nae-Su;Choe, Byeong-Tae;Kim, U-Hyeon;Im, Seong-Un;Gwon, U-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.31-34
    • /
    • 2003
  • There are several types of switching table for selection voltage vector in direct torque control of induction motor. In general, two-quadrant and four-quadrant operation switching table are used mostly. Two-quadrant operation has an advantage that reduced the torque ripples in comparison with four-quadrant operation, but it has the defect that is not constant average torque. Because the torque increasing slope size by non-zero voltage vector is different from the torque decreasing slope size by zero voltage vector as speed region. The main objective of this study is to maintain constant average torque using two-quadrant operation switching table. In proposed method, the torque increasing slope or decreasing slope are calculated before selected voltage vector is applied. Then, it is applied to zero voltage vector or non-zero voltage vector until the torque increasing slope and decreasing slope are equal. In total magnitude. Therefore it becomes to maintain average torque at whole operation speed. The validity of the proposed method is proven by simulated and experimental results.

  • PDF

Characteristics of Ultrasonic Motor using Voltage Control and Phase Difference Control (초음파 모터의 전압 및 위상차 제어 특성)

  • Shin, Duk;Kim, Dong-Ok;Ko, Nak-Yong;Choi, Han-Soo;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.949-952
    • /
    • 1996
  • The ultrasonic motor(USM) has good characteristics such as compact size, silent motion, low speed, high torque and high speed response. The USM is driven by 2-phase AC electricity. The control parameters of USM are voltage, phase difference, frequency of input power, etc. In this paper, we propose voltage difference control. And we designed USM controller to adjust voltage and phase using pLSI(programmable Large Scale Integration). Voltage difference control has many advantages that are lower current, lower power than phase difference control. Especially there is nearly zero ampere at the zero point of speed and torque. we can apply this voltage difference control to the compliance control of DD manipulator.

  • PDF

Analysis and modelling of the large capacity multilevel H-bridge inverter using Space vector modulation (Space vector modulation을 이용한 대용량 멀티 레벨 H-bridge 인버터의 해석 및 모델링)

  • Kim H.J.;Jeong S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.5-9
    • /
    • 2003
  • Conventional variable-speed Induction motor drives with inverters are subject to detrimental effect of zero-sequence voltages, such a shaft voltage and bearing current. This paper presents a way of the suppression of the zero-sequence components in multilevel H-bridge inverters. First examined Is the inherent zero-sequence characteristic of the conventional subharmonic PW method. Then it is shown that the zero-sequence voltage can be eliminated with proper -selection of switching states with space vector modulation. Although this method alone restricts the linear modulation range of control, a combination of the proposed method and the minimum switching method appears to be effective in suppressing the zero-sequence voltage to minimum level while maintaining the linear control range.

  • PDF

A Study on the Rejection of Zero Phase Voltage of a PWM Inverter System (PWM 인버터 시스템의 영상전압 억제에 관한 연구)

  • 박찬근;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.335-339
    • /
    • 1999
  • This Paper Proposes a circuit system that is capable of rejecting the zero phase voltage produced by a inverter, which transform do-ac power using high speed power semiconductor. It generates a rejecting voltage which has the same amplitude as, but the opposite phase to the zero phase voltage. The rejecting voltage is superimposed on the load line for rejecting of the zero phase voltage through a transformer. Simulation results show that the zero phase voltage applied to the load and ground current are eliminated.

  • PDF

A Study on Vector Control of Induction Motor Based on Speed Estimation (유도전동기의 속도 추정 벡터제어에 관한 연구)

  • 설승기;권봉현;강준구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.928-933
    • /
    • 1990
  • In the vector controlled induction machine drives, mechanical speed sensors such as shaft encoder and resolver have been used. However, the mechanical speed sensors present some problems and restrict the wide applications of high performance AC drives. This paper describes the vector strategy with the speed estimation algorithm in which motor slip frequency is calculated. Also, the angle deviation of the rotor flux vector is calculated and instantaneously compensated to keep the q axis flux zero in the rotational reference frame.

  • PDF

A Stable Sensorless Speed Control for Induction Motor in the Overall Range (전영역에서 안정된 유도전동기의 센서리스 속도제어)

  • 김종수;김성환;오세진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.641-647
    • /
    • 2004
  • By most sensorless speed control schemes for induction motor. the control performances in high speed range are good, but it is difficult to obtain satisfactory results in low speed region. This paper proposes a new method controlling the low and the high speed regions separately to attain the stable operation in the overall range. The current error compensation method, in which the controlled stator voltage is applied to the induction motor so that the error between stator currents of the numerical model and the actual motor can be forced to decay to zero as time proceeds. is used in the low speed region In the high speed region. the method with adaptive observer is utilized. This control strategy contains an adaptive state observer for flux estimation. The rotor speed can be calculated from the rotor flux and the motor currents. The experimental results indicate good speed and load responses from the very low speed range to the high, and also show accurate speed changing performance between the low and the high speed range.