• Title/Summary/Keyword: Zero order kinetics

Search Result 80, Processing Time 0.018 seconds

Biodegradation Kinetics of 4-Chlorophenol by Pseudomonas sp. EL-091S (Pseudomonas sp. EL-091S에 의한 4-Chlorophenol의 분해 Kinetics)

  • Son, Jun-Seog;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.95-102
    • /
    • 1993
  • In order to find the most fitted biodegradation model, biodegradation models to the initial 4-chlorophenol concentrations were investigated and had been fitted by the linear regression. The degrading bacterium, EL-091S, was selected among phenol-degraders. The strain was identified with Pseudomows sp. from the result of taxonomical studies. The optimal condition for the biodegradation was as fellows: secondary carbon source, concentration of ammonium nitrate, temperature and pH were 200mg/l fructose, 600 mg/l, $30^{\circ}C$ and 7.0 respectively. The highest degradation rate of the 4-chlorophenol was about 58% for 24 hours incubation on the optimal condition. Biodegradation kinetics model of 5 mg/l 4-Chlorophenol, 10 mg/l 4-chlorophenol and 50 mg/l 4-chlorophenol were fitted the zero order kinetics model, respectively. Key Words : 4-chlorophenol, Pseudomonas sp., zero order kinetics model.

  • PDF

Formulation and Evaluation of Controlled Release Patch Containing Naproxen (나프록센 함유 방출제어형 패취의 제제설계 및 평가)

  • Rhee, Gye-Ju;Hong, Seok-Cheon;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to prepare the controlled release adhesive patch containing naproxen. Pressuresensitive adhesive (PSA)-type patch was fabricated by casting of polyisobutylene (PIE.) and mineral oil in toluene. Membrane-controlled release (MCR)-type patch was prepared by the attachment of the controlled release membrane on the PSAtype patch. The membrane was mainly composed of Eudragit, polyethylene glycol(PEG) and glycerin. The drug release profile and skin permeation test with various patches were evaluated in vitro. The release of naproxen from PIE-based PSAtype patch with various loading doses fitted Higuchi's diffusion equation. However, the permeation of naproxen through hairless mouse skin from PSA-type patch followed zero-order kinetics. In MCR-type patch, thickness of controlled release membrane affected on the drug release rate highly. In the composition of membrane, the release rate was decreased as the ratio of Eudragit increased. The drug release from the MCR-type patch followed zero order kinetics. The permeation of naproxen through hairless mouse skin from MCR-type patch showed lag time for the intial release period and didn't fit the zero-order kinetics

  • PDF

Innovative Remediation of Arsenic in Groundwater by Nano Scale Zero-Valent Iron

  • Kanel, Sushil-Raj;Kim, Ju-Yong;Park, Heechul
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.87-90
    • /
    • 2003
  • This research examines the feasibility of using laboratory-synthesized nano scale zero-valent iron particles to remove arsenic from aqueous phase. Batch experiments were performed to determine arsenic sorption rates as a function of the nano scale zero-valent iron solution concentration. Rapid adsorption of arsenic was achieved with the nano scale zero-valent iron. Typically 1 mg $L^{-1}$ arsenic (III) was adsorbed by 5 g $L^{-1}$ nano scale zero-valent iron below the 0.01 g $L^{-1}$ concentration within 7min. The kinetics of the arsenic sorption followed pseudo-first-order reaction kinetics. Observed reaction rate constants ( $K_{obs}$) varied between 11.4 to 129.0 $h^{-1}$ with respect to different concentrations of nano scale zero-valent iron. A variety of analytical techniques were used to study the reaction products including HGAAS (hydride generator atomic adsorption spectrophotometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy). Our experimental results suggest novel method for efficient removal of arsenic Iron groundwater.r.

  • PDF

pH-Dependent Drug Release from Polymethacrylic Acid Hydrogel Matrix (Polymethacrylic Acid 하이드로겔 매트릭스로부터의 pH 의존성 약물 방출)

  • Kim, Kyung-Chung;Kim, Kil-Soo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.179-183
    • /
    • 1989
  • Drug release experiments were performed based on pH-sensitive swelling behaviors of polymethacrylic acid. 5-Fluorouracil as a nonionic model drug revealed release patterns depending solely on pH-dependent swelling kinetics of polymethacrylic acid. In contrast, release of propranolol hydrochloride as a cationic model drug was significantly affected by ionic drug-polymer interaction as well as the swelling kinetics. Accordingly, a zero-order release pattern was obtained at pH 7, which was distinguished from the general matrix type drug release pattern.

  • PDF

Reduction Characteristics of Triclosan using Zero-valent Iron and Modified Zero-valent Iron (영가철 및 개질 영가철을 이용한 triclosan의 환원분해 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.859-868
    • /
    • 2017
  • In this study, the reductive dechlorination of triclosan using zero-valent iron (ZVI, $Fe^0$) and modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium-coated iron (Pd/Fe)) was experimentally investigated, and the reduction characteristics were evaluated by analyzing the reaction kinetics. Triclosan could be reductively decomposed using zero-valent iron. The degradation rates of triclosan were about 50% and 67% when $Fe^0$ and Aw/Fe were used as reductants, respectively, after 8 h of reaction. For the Pd/Fe system, the degradation rate was about 57% after 1 h of reaction. Thus, Pd/Fe exhibited remarkable performance in the reductive degradation of triclosan. Several dechlorinated intermediates were predicted by GC-MS spectrum, and 2-phenoxyphenol was detected as the by-product of the decomposition reaction of triclosan, indicating that reductive dechlorination occurred continuously. As the reaction proceeded, the pH of the solution increased steadily; the pH increase for the Pd/Fe system was smaller than that for the $Fe^0$ and Aw/Fe system. Further, zero-order, first-order, and second-order kinetic models were used to analyze the reaction kinetics. The first-order kinetic model was found to be the best with good correlation for the $Fe^0$ and Aw/Fe system. However, for the Pd/Fe system, the experimental data were evaluated to be well fitted to the second-order kinetic model. The reaction rate constants (k) were in the order of Pd/Fe > Aw/Fe > $Fe^0$, with the rate constant of Pd/Fe being much higher than that of the other two reductants.

Photocatalytic Degradation of MB with One-body Photoanode (일체형 포토어노드를 활용한 메틸렌블루의 분해)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Methylene blue(MB) was photocatalytically degraded with one-body photoanode and solar simulator to investigate the possible application to both environmental purification and photoelectrochemical cell for hydrogen production. Photoactive titanium dioxide was formed on both sides of Ti plate following steps such as rinsing-annealing-calcination or anodizing(20 V, 30 V)-annealing($350^{\circ}C$, $450^{\circ}C)$ after etching. The prepared titania plate($2cm{\times}2\;cm$, ca 1.6 mg $TiO_2$ on the basis of $1\;{\mu}m$ thickness) was used to degrade MB(10 ppm in 200 mL solution). The reaction tended to follow the Langmuir-Hinshelwood kinetics with zero order. Comparative experiments with Degussa P25 showed the same zero order kinetics when 2 mg of P25 had been used, while the first order kinetics when 200 mg used. This concludes the feasibility of the prepared titania plate as a material for the purification of low-level harmful organics and an electrode or a membrane for photoelectrochemical system for hydrogen production.

Controlled Release Properties of Ketoprofen from Methacrylate Polymer Gels (메타크릴레이트 폴리머로 제조한 겔 제제로부터 케토프로펜의 제어 방출특성)

  • Han, Kun;Park, Jeong-Sook;Kim, Nak-Seo;Chung, Youn-Bok;Cha, Cheol-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • Hydrogels containing ketoprofen were prepared by adding NaOH or $Ca(OH)_2$ solution to Eudragit L, S and Eudispert hv at various concentration. And xerogels were prepared by drying hydrogels. On the other hand, organogels containing ketoprofen were prepared by mixing Eudragit L or S and propylene glycol. Effects of polymer content and base on drug release were investigated using KP V dissolution method. The release rate of ketoprofen from Eudragit L & S hydrogel decreased with increasing in polymer content. And the drug release rate from cal. hydroxide based gels were more decreased than that from sod. hydroxide based gels. At pH 7.2 dissolution medium, e release of ketoprofen from Edispert hv hydrogel followed apparent zero order kinetics. The release of ketoprofen from xerogel involved in simultaneous absorption of water and desorption of ketoprofen via a pH-dependant swelling controlled mechanism. The release of ketoprofen from Eudragit S organogels followed apparent zero order kinetics, providing strong evidence for a surface erosion mechanism.

  • PDF

Controlled Release of Isonicontinic Acid Hydrazide from the Membrane-Coated Tablet

  • Kim, Ki-Man;Kim, Shin-Keun
    • Archives of Pharmacal Research
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Membrane-coated tablet of isonicotinic acid hydrazide (INAH) which releases INAH at the zero-order kinetics was deveoped. It consisted of a soluble tablet core surrounded by a porous membrane which controls the diffusion rate. Tablet cores were prepared by compressing granules of INAH and polyvinyl chloride (PVC) dissolved in methyl ethyl ketone in which micronized sucrose were suspended. Diffusion rate of INAH from the tablet through the membrane was constant until the loaded INAH in the core was almost released. The rate was independent of pH of the dissolution medium. Water-soluble sucrose particles behaved as a poreproducing material in the water-insoluble PVC film coat. The pH independency of the rate was probably due to the high solubility of INAH in the water of wide pH range. The diffusion rate of INAH could be controlled by chnaging the composition of the membrane or the coat weight. This membrane-coated INAH tablet seemed to be a powerful candidate for the controlled release drug delivery system (DDS) of INAH or other highly watersoluble drugs.

  • PDF

Controlled Release of Drugs from Reservoir Type Devices Coated with Porous Polyurethane Membranes (다공성 폴리우레탄으로 피막된 Reservoir형 약물 조절 방출 시스템)

  • Kim, Kil-Soo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.4
    • /
    • pp.207-211
    • /
    • 1993
  • Reservoir type devices were designed for long-term implantable drug delivery system. The reservoir type device was prepared with the polymethacrylic acid gel coated with polyurethane membrane. Release controlling agent (RCA) were employed to control drug release from devices via generation of micropores in the membranes. The polyurethane membrane functioned as a rate controlling barrier. The drug release pattern of hydrogel demonstrated zero order kinetics. The release rate of drugs could be regulated by varying hydrophobicity/hydrophilicity and content of the RCA, as well as the thickness of the polyurethane membrane. The release of drugs from this system was governed by pore mechanism via simple diffusion and osmotic pressure.

  • PDF

Controlled Release of Drugs from Silicone Rubber Matrices-Effects of Physical Properties of Drugs and Release Controlling Agents on Drug Release Mechanisms- (실리콘 마트릭스로부터의 약물조절 방출-약물 및 방출조절제의 물성이 방출기전에 미치는 영향-)

  • Jeon, So-Young;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.4
    • /
    • pp.237-245
    • /
    • 1991
  • Matrix type silicone rubber devices were designed for long-term implantable drug delivery system. Release controlling agents (RCA), i.e., polypropylene glycol, polyethylene glycol, were employed to control drug release from the devices. The release rate of drug from RCA dispersed silicone matrices was mainly dependent on hydrophilicity-hydrophobicity of drug and RCA. In the case of hydrophilic drug, the release from the RCA dispersed matrix was regulated by swelling kinetics. Especially when the relatively hydrophobic polypropylene glycol was used, swelling control mechanism induced zero-order release kinetics. Whereas, the release of hydrophobic drug was resulted from partition mechanism. The effect of RCA was to increase drug diffusivity.

  • PDF