• Title/Summary/Keyword: Zero Mean

Search Result 526, Processing Time 0.027 seconds

Direct implementation of stochastic linearization for SDOF systems with general hysteresis

  • Dobson, S.;Noori, M.;Hou, Z.;Dimentberg, M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.473-484
    • /
    • 1998
  • The first and second moments of response variables for SDOF systems with hysteretic nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of well-known statistical linearization methods, provides concise, model-independent linearization coefficients that are well-suited for numerical solution. The method may be applied to systems which incorporate any hysteresis model governed by a differential constitutive equation, and may be used for zero or non-zero mean random vibration. The implementation eliminates the effort of analytically deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In this study, systems with three different hysteresis models are analyzed under various zero and non-zero mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization studies and Monte Carlo Simulation.

Statistical Properties of Electric Fields Produced by Cloud-to-Ground Lightning Return Strokes

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Seung-Chil;Ahn, Chang-Hwan
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.120-126
    • /
    • 2001
  • For the past five years, Inha University has been observing the electric fields produced by cloud-to-ground return strokes. This paper presents the summary of most recent results. Statistics on the zero-to-peak rise time, the zero-to-zero crossing time and the amplitude ratio of the second peak in the opposite polarity to the first peak were examined. The radiation electric fields produced by distant cloud-to-ground return strokes were substantially same pattern. The first return stroke field starts with a slowly increasing front and rises abruptly to peak. The rising portions of the electric fields produced by cloud-to-ground return strokes last 1 $mutextrm{s}$ to a few $mutextrm{s}$. The mean values of the zero-to-peak rise times of electric fields were 5.72 $mutextrm{s}$ and 4.12 $mutextrm{s}$ for the positive and the negative cloud-to-ground return strokes, respectively. The mean of the zero-to-zero crossing time for the positive return strokes was 29.48 $mutextrm{s}$ compared with 38.54 $mutextrm{s}$ for the negative return strokes. The depths of the dip after the peak of return stroke electric fields also have the dependence on the polarity of cloud-to-ground return stroke, and the mean values for the positive and negative cloud-to-ground return strokes were 33.55 and 28.19%, respectively.

  • PDF

Accurate application of Gaussian process regression for cosmology

  • Hwang, Seung-gyu;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2021
  • Gaussian process regression (GPR) is a powerful method used for model-independent analysis of cosmological observations. In GPR, it is important to decide an input mean function and hyperparameters that affect the reconstruction results. Depending on how the input mean function and hyperparameters are determined in the literature, I divide into four main applications for GPR and compare their results. In particular, a zero mean function is commonly used as an input mean function, which may be inappropriate for reconstructing cosmological observations such as the distance modulus. Using mock data based on Pantheon compilation of type Ia supernovae, I will point out the problem of using a zero input and suggest a new way to deal with the input mean function.

  • PDF

ON SOME GEOMETRIC PROPERTIES OF QUADRIC SURFACES IN EUCLIDEAN SPACE

  • Ali, Ahmad T.;Aziz, H.S. Abdel;Sorour, Adel H.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.593-611
    • /
    • 2016
  • This paper is concerned with the classifications of quadric surfaces of first and second kinds in Euclidean 3-space satisfying the Jacobi condition with respect to their curvatures, the Gaussian curvature K, the mean curvature H, second mean curvature $H_{II}$ and second Gaussian curvature $K_{II}$. Also, we study the zero and non-zero constant curvatures of these surfaces. Furthermore, we investigated the (A, B)-Weingarten, (A, B)-linear Weingarten as well as some special ($C^2$, K) and $(C^2,\;K{\sqrt{K}})$-nonlinear Weingarten quadric surfaces in $E^3$, where $A{\neq}B$, A, $B{\in}{K,H,H_{II},K_{II}}$ and $C{\in}{H,H_{II},K_{II}}$. Finally, some important new lemmas are presented.

Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input

  • Palanisamy, Rajendra P.;Cho, Soojin;Kim, Hyunjun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.489-503
    • /
    • 2015
  • Response estimation at unmeasured locations using the limited number of measurements is an attractive topic in the field of structural health monitoring (SHM). Because of increasing complexity and size of civil engineering structures, measuring all structural responses from the entire body is intractable for the SHM purpose; the response estimation can be an effective and practical alternative. This paper investigates a response estimation technique based on the Kalman state estimator to combine multi-sensor data under non-zero mean input excitations. The Kalman state estimator, constructed based on the finite element (FE) model of a structure, can efficiently fuse different types of data of acceleration, strain, and tilt responses, minimizing the intrinsic measurement noise. This study focuses on the effects of (a) FE model error and (b) combinations of multi-sensor data on the estimation accuracy in the case of non-zero mean input excitations. The FE model error is purposefully introduced for more realistic performance evaluation of the response estimation using the Kalman state estimator. In addition, four types of measurement combinations are explored in the response estimation: strain only, acceleration only, acceleration and strain, and acceleration and tilt. The performance of the response estimation approach is verified by numerical and experimental tests on a simply-supported beam, showing that it can successfully estimate strain responses at unmeasured locations with the highest performance in the combination of acceleration and tilt.

Comparison of Algorithms for Sea Surface Current Retrieval using Himawari-8/AHI Data (Himawari-8/AHI 자료를 활용한 표층 해류 산출 알고리즘 비교)

  • Kim, Hee-Ae;Park, Kyung-Ae;Park, Ji-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • Sea surface currents were estimated by applying the Maximum Cross Correlation (MCC), Zero-mean Sum of Absolute Distances (ZSAD), and Zero-mean Sum of Squared Distances (ZSSD) algorithms to Himawari-8/Advanced Himawari Imager (AHI) thermal infrared channel data, and the comparative analysis was performed between the results of these algorithms. The sea surface currents of the Kuroshio Current region that were retrieved using each algorithm showed similar results. The ratio of errors to the total number of estimated surface current vectors had little difference according to the algorithms, and the time required for sea surface current calculation was reduced by 24% and 18%, relative to the MCC algorithm, for the ZSAD and ZSSD algorithms, respectively. The estimated surface currents were validated against those from satellite-tracked surface drifter and altimeter data, and the accuracy evaluation of these algorithms showed results within similar ranges. In addition, the accuracy was affected by the magnitude of brightness temperature gradients and the time interval between satellite image data.

Natural Convection Induced by g-jitter in an Enclosure under Null Gravity (무중력 상태하의 밀폐 용기 내에서 g-jitter에 의한 자연 대류)

  • Kim, Ki-Hyun;Hyun, Jae-Min;Kwak, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.522-527
    • /
    • 2001
  • Comprehensive numerical computations are made of side-heated squire cavity which is exposed to zero mean g-jitter. Numerical solutions are acquires to the governing two-dimensional Navier-Stokes equations for a Boussinesq fluid. When the system is exposed to pure sinusoidal g-jitter inclined to the vertical axis, in spite of zero mean gravity there exist non zero net flow fields [8]. The resonance phenomenon are observed in moderate Rayleigh number. And, by comprehensive numerical work, unlike[5], it is found that they are related with the overshoot phenomenon of the sudden gravity up problem.

  • PDF

Wind Mapping of Singapore Using WindSim (WindSim을 이용한 싱가폴 바람지도 작성)

  • Kim, Hyun-Goo;Lee, Jia-Hua
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.839-843
    • /
    • 2011
  • We have established a wind map of Singapore, a city-state characterized its land cover by urban buildings to confirm a possibility of wind farm development. As a simple but useful approximation of urban canopy, a zero-plane displacement concept was employed. The territory is divided into 15 sectors having similar urban building layouts, and zero-plane displacement, equivalent roughness height at each sector was calculated to setup a terrain boundary condition. Annual mean wind speed and mean wind power density map were drawn by a CFD micrositing model, WindSim where Changi International Airport wind data was used as an in-situ measurement. Unfortunately, predicted wind power density does not exceed 80 $W/m^2$ at 50 m above ground level which would not sufficient for wind power generation. However, the established Singapore wind map is expected to be applied for wind environment assessment and urban planning purpose.

ON SOME GENERALIZATIONS OF THE REVERSIBILITY IN NONUNITAL RINGS

  • Hryniewicka, Malgorzata Elzbieta;Jastrzebska, Malgorzata
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.289-309
    • /
    • 2019
  • This paper is intended as a discussion of some generalizations of the notion of a reversible ring, which may be obtained by the restriction of the zero commutative property from the whole ring to some of its subsets. By the INCZ property we will mean the commutativity of idempotent elements of a ring with its nilpotent elements at zero, and by ICZ property we will mean the commutativity of idempotent elements of a ring at zero. We will prove that the INCZ property is equivalent to the abelianity even for nonunital rings. Thus the INCZ property implies the ICZ property. Under the assumption on the existence of unit, also the ICZ property implies the INCZ property. As we will see, in the case of nonunital rings, there are a few classes of rings separating the class of INCZ rings from the class of ICZ rings. We will prove that the classes of rings, that will be discussed in this note, are closed under extending to the rings of polynomials and formal power series.

A Zero-Inated Model for Insurance Data (제로팽창 모형을 이용한 보험데이터 분석)

  • Choi, Jong-Hoo;Ko, In-Mi;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.485-494
    • /
    • 2011
  • When the observations can take only the non-negative integer values, it is called the count data such as the numbers of car accidents, earthquakes, or insurance coverage. In general, the Poisson regression model has been used to model these count data; however, this model has a weakness in that it is restricted by the equality of the mean and the variance. On the other hand, the count data often tend to be too dispersed to allow the use of the Poisson model in practice because the variance of data is significantly larger than its mean due to heterogeneity within groups. When overdispersion is not taken into account, it is expected that the resulting parameter estimates or standard errors will be inefficient. Since coverage is the main issue for insurance, some accidents may not be covered by insurance, and the number covered by insurance may be zero. This paper considers the zero-inflated model for the count data including many zeros. The performance of this model has been investigated by using of real data with overdispersion and many zeros. The results indicate that the Zero-Inflated Negative Binomial Regression Model performs the best for model evaluation.