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ON SOME GENERALIZATIONS OF THE REVERSIBILITY IN
NONUNITAL RINGS

MALGORZATA ELZBIETA HRYNIEWICKA AND MALGORZATA JASTRZEBSKA

ABSTRACT. This paper is intended as a discussion of some generaliza-
tions of the notion of a reversible ring, which may be obtained by the
restriction of the zero commutative property from the whole ring to some
of its subsets. By the INCZ property we will mean the commutativity
of idempotent elements of a ring with its nilpotent elements at zero, and
by ICZ property we will mean the commutativity of idempotent elements
of a ring at zero. We will prove that the INCZ property is equivalent to
the abelianity even for nonunital rings. Thus the INCZ property implies
the ICZ property. Under the assumption on the existence of unit, also
the ICZ property implies the INCZ property. As we will see, in the case
of nonunital rings, there are a few classes of rings separating the class of
INCZ rings from the class of ICZ rings. We will prove that the classes of
rings, that will be discussed in this note, are closed under extending to
the rings of polynomials and formal power series.

1. Preliminaries

All rings considered in this paper are assumed to be associative but not
necessarily with unit. The standard extension of a ring R to a unital ring
with the help of the ring of integers is denoted by R'. The sets of idempotent
elements in R and nilpotent elements in R are denoted by F(R) and N(R)
respectively.

J. Lambek in [13] introduced the notion of a symmetric ring understood
as a unital ring R in which rst = 0 implies rts = 0 for any r,s,t € R, and
proved that an equivalent condition on a unital ring R to be symmetric is that
r1 72 = 0 implies r45(1) - To2)  Tom) = 0 for any positive integer n,
any elements r1,7,...,7r, € R and any permutation o of the set {1, 2,... ,n}.
D. D. Anderson and V. Camillo in [1] continued the study of rings whose zero
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products commute, defining the notion of a ring satisfying the ZC,, property
as a not necessarily unital ring R in which rq - rg---7r, = 0 implies 7,y -
To(2) ' To(n) = 0 for any elements r1,72,...,7, € R and any permutation o
of the set {1,2, e ,n}, and proving that the ZC3 property implies the ZC,,
property for any n > 3. B. H. Shafee and S. K. Nauman in [16] distinguished
between the right and left symmetries, defining the notions of right and left
symmetric rings as not necessarily unital rings R in which rst = 0 implies
rts = 0 and srt = 0 respectively, for any 7, s,t € R. In this context a symmetric
ring means a ring both right and left symmetric, or equivalently a ring satisfying
the ZCs3 property. J. M. Habeb in [7] introduced the notion of a ZC ring
understood as a ring R in which rs = 0 implies sr = 0 for any r,s € R.
P. M. Cohn in [6] was the first who used the term a reversible ring instead of a
ZC ring. Finally, H. E. Bell in [3] defined the notion of a ring satisfying the IFP
property as a ring R in which rs = 0 implies rRs = 0 for any r, s € R (in both
the definitions, there is no reason to require R to be unital). J. M. Habeb in [7]
referred to rings satisfying the IFP property as ZI rings. L. Motais de Narbonne
in [15] was the first who used the term a semicommutative ring instead of a
ring satisfying the IFP property.

Commutative rings, as well as reduced rings, are both symmetric and re-
versible. Symmetric rings with unit are obviously reversible. For nonunital
rings this is no longer true, as shown by B. H. Shafee and S. K. Nauman in
[16]. Right symmetric rings, as well as reversible rings, are semicommutative.
The classes of right symmetric rings, reversible rings, and semicommutative
rings are not closed under standard adjoining unit. For a deeper discussion of
the above mentioned classes of rings under the assumption that these rings are
unital, we refer the readers to [14].

Further generalizations of the commutative property may be obtained by
the restriction of this property from the whole ring to some of its subsets. A
not necessarily unital ring R in which er = re holds for any e € E(R) and
r € R, according to the definition introduced by I. Kaplansky in [10], is said to
be abelian. 1. Kaplansky studied of the abelian property in the class of Baer
rings. An equivalent condition on a unital ring R to be abelian is that ere = er
holds for any e € E(R) and r € R. Another equivalent condition on a unital
ring R to be abelian is that er = 0 implies eRr = 0 for any e € F(R) and
r € R. According to the definition introduced by G. F. Birkenmeier in [4], an
idempotent e of a ring R is said to be right semicentral or left semicentral in
R if ere = er or ere = re, respectively, holds for any r € R. W. Chen in [5]
introduced the notion of a semiabelian ring understood as a ring R in which
every idempotent is either right semicentral or left semicentral. J. Wei in [18]
defined the notion of a right almost abelian ring as a ring R in which er = 0
implies eRr = 0 for any e € E(R) and r € N(R) (in both the definitions, there
is no reason to require R to be unital).
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Semicommutative rings with unit are abelian. As we will see in Theorem 2.1,
for symmetric rings, as well as for reversible rings, this implication still holds
if we drop the assumption on the existence of unit. An example of a right
symmetric ring without unit, which is nonabelian, was given by B. H. Shafee
and S. K. Nauman in [16]. This example confirms that semicommutative rings
without unit are not abelian in general. As we will see in Corollary 2.2, abelian
rings form a class closed under standard adjoining unit. Abelian rings are
obviously both semiabelian and right almost abelian. J. Wei in [18] showed
that neither semiabelian rings need not be right almost abelian nor right almost
abelian rings need not be semiabelian even then these rings are unital.

This paper is intended as a discussion of some generalizations of the notion
of a reversible ring, which may be obtained by the restriction of the zero com-
mutative property from the whole ring to some of its subsets. The subsets of
idempotent elements and nilpotent elements of this ring are natural subsets for
considering such restrictions. For a ring R, we consider the following properties:

INCZ: idempotents of R commute with nilpotents of R at zero, which
means that the equivalence er = 0 if and only if re = 0 holds for any
e € E(R) and r € N(R).
ICZ: idempotents of R commute at zero, which means that ef = 0 im-
plies fe =0 for any e, f € E(R).
We can directly verify the following connections between the above properties:
abelianity = INCZ = ICZ.

To see the latter implication, we assume that ef = 0 where e, f € E(R). Then
since fe € N(R) and e(fe) = 0, it follows that also fe = (fe)e = 0 by the
assumption on the INCZ property. As we will see in Theorem 2.1, even for
nonunital rings, the INCZ property implies the abelianity. As we will see in
Theorem 2.3, under the assumption on the existence of unit, the ICZ property
implies the abelianity. As we will see in Section 3, in the case of nonunital rings,
there are a few classes of rings separating the class of abelian rings from the
class of rings satisfying the ICZ property. In Section 4 we will prove that the
classes of rings, that will be discussed in Section 3, are closed under extending
to the rings of polynomials and formal power series.

The authors wishes to express their thanks to J. Jelisiejew, J. Krempa and
R. Mazurek for many stimulating conversations, which were of great help in
writing the paper.

2. Generalizations of reversible rings without unit

Recall that unless otherwise stated we do not require rings to be unital.
Theorems 2.1, 2.3 and 2.9 were partially noticed by V. K. Kharchenko et al. in
[9], J. Han et al. in [8] and G. Shin in [17].

Theorem 2.1. For every ring R, the following statements are equivalent:

1. R is abelian;
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et = te holds for any e € E(R) and t € N(R);

ef = fe holds for any e, f € E(R);

ere =e and rer =1 imply e =1 for any e € E(R) and r € R;
efe=-e and fef = f imply e = f for any e, f € E(R);

R satisfies the INCZ property.

S oUW N

Proof. The implications 1 = 2 = 6,1 = 3 = 5 and 1 = 4 = 5 are obvious.
In the proofs of both the implications 5 = 1 and 6 = 1, we let e € F(R) and
r € R. Then also e + er — ere,e + re — ere € E(R) and er — ere,re — ere €
N(R). In the case when the statement 5 holds, since e(e + er — ere)e = e and
(e+er—ere)e(e+er—ere) = eder—ere, and simultaneously e(e+re—ere)e = e
and (e + re — ere)e(e + re — ere) = e + re — ere, from this it follows that
e=e+er—ereand e =e+re—ere, and thus er = ere = re. In the case when
the statement 6 holds, since (er — ere)e = 0 and e(re — ere) = 0, from this it
follows that e(er — ere) =0 and (re — ere)e = 0, and thus er = ere =re. [0

Since the early 50’s, the notion of a inverse semigroup, understood as a
semigoup S in which for every s € S there exists a unique u € S such that
sus = s and usu = wu, is of fundamental importance in semigroup theory. As
we see in Theorem 2.1, an equivalent condition on a ring R to be abelian is
that idempotent elements in R form an inverse semigroup.

Corollary 2.2. If in a ring R the equality et = te holds for any e € E(R)
and t € N(R), then the same equality holds also in the unital ring R for any
e € E(R') and t € N(RY). In particular, abelian rings form a class closed
under standard adjoining unait.

Proof. The former of the statements follows immediately from the fact that
E(RY)=E(R)U(1 - E(R)) and N(R') = N(R). The latter of the statements
follows directly from Theorem 2.1. (I

Theorem 2.3. For every unital ring R, the following statements are equivalent:

1. R is abelian;

ete = et holds for any e € E(R) and t € N(R);

efe =ef holds for any e, f € E(R);

te = 0 implies et =0 for any e € E(R) and t € N(R);
ef € E(R) holds for any e, f € E(R);

6. R satisfies the ICZ property.

Proof. The implications 1 = 2 = 4 and 1 = 3 = 5 = 6 are obvious. In the
proofs of both the implications 4 = 1 and 6 = 1, we assume that e, f € F(R)
are orthogonal and r € R. Then also e + erf € E(R) and erf € N(R). In the
case when the statement 4 holds, since (erf)e = 0, it follows that also erf =
e(erf) = 0. In the case when the statement 6 holds, since f(e + erf) =0, it
follows that also erf = (e+erf)f = 0. In both the cases, er f = 0 holds for any
orthogonal e, f € F(R) and any r € R. In particular, er(l1—e) =0= (1—¢)re,
and, in consequence, er = ere = re. (I

G D
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Theorem 2.4. If in a ring R the property ef € E(R) holds for any e, f €
E(R), then ey - ex---en, = 0 implies ey(1) - €x(2) -+~ €a(n) = 0 for any positive
integer n, any elements eq, e, ..., e, € E(R) and any permutation o of the set
{1, 2,... ,n}. In particular, the ring R satisfies the ICZ property.

Proof. The proof is the simple adaptation of the proof of the theorem, according
to which reduced rings satisfy the ZC,, property for any positive integer n, see
for instance [1, Theorem 1.3]. O

In semigroup theory, the notion of an E-semigroup is defined as a semigroup
whose idempotent elements form a subsemigroup. For this reason, a ring R, in
which the property ef € E(R) holds for any e, f € E(R), might be called an
E-ring.

Theorem 2.5. For every ring R, the following statements are equivalent:

1. R satisfies the ICZ property;
2. ef =0 implies fRe =0 for any e, f € E(R);
3. ef =0 implies eRf =0 for any e, f € E(R).

Proof. In the proofs of all three implications 1 = 2 =3 = 1, welete, f € E(R)
with ef = 0 and r € R. In the case when the statement 1 holds, also fe = 0.
Since e + re — ere € E(R) and (e + re — ere)f = 0, it follows that fre =
fle+re—ere) = 0. In the case when the statement 2 holds, also fe € fRe = 0,
and thus eRf = 0. In the case when the statement 3 holds, since f— fe € E(R)
and (f — fe)e =0, it follows that fe = (f — fe)fe € (f — fe)Re = 0. O

Corollary 2.6. Every semicommutative ring satisfies the ICZ property.
Proof. The corollary is a simple consequence of Theorem 2.5. O

Theorem 2.7. For every ring R, the following statements are equivalent:
1. erf =efr holds for any e, f € E(R) and r € R;

etf = eft holds for any e, f € E(R) and t € N(R);

efg=egf holds for any e, f,g € E(R);

ere = er holds for any e € E(R) and r € R;

ete = et holds for any e € E(R) and t € N(R);

efe =ef holds for any e, f € E(R);

re = 0 implies er =0 for any e € E(R) and r € R;

te = 0 implies et =0 for any e € E(R) and t € N(R);
9. re =0 implies eRr =0 for any e € E(R) and r € R;

10. te = 0 implies eRt = 0 for any e € E(R) and t € N(R).

e B i

Proof. The implications 1 =4 =9 =7=8,1= 2= 5= 10 = 8 and
1 = 3 = 6 are obvious. In the proofs of all three implications 6 = 4, 8 = 4 and
4= 1,welete, f € E(R) and r € R. Then, as we know, eter—ere € E(R) and
er—ere € N(R). In the case when the statement 6 holds, since e(e+er—ere)e =
e(e + er — ere), it follows that ere = er. In the case when the statement 8
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holds, since (er — ere)e = 0, from this it follows that e(er — ere) = 0, and
thus ere = er. We suppose now that the statement 4 holds. Then idempotent
elements of the ring R form a semigroup, and hence the ring R satisfies the ICZ
property by Theorem 2.4. Since (e—ef)? = e—ef—efe+(ef)? = e—ef, which
means that e —ef € E(R), and since (e — ef)f = 0, from this it follows that
(e—ef)rf € (e—ef)Rf = 0 by Theorem 2.5, and thus erf = e(frf) =efr. O

N. K. Kim et al. in [12] defined the notions of rings satisfying the right and
left IIP properties as rings R in which rse = 0 implies res = 0 and ers = 0
implies res = 0 respectively, for any e € E(R) and r, s € R. These authors also
defined the notions of rings satisfying the right and left IR properties as rings
R in which re = 0 implies er = 0 and er = 0 implies re = 0 respectively, for
any e € F(R) and r € R, and proved that an equivalent condition on a ring R
to satisfy the right IR property is that ere = er holds for any e € E(R) and
r € R. Note that in Theorem 2.7 we gave a deeper characterization of rings
satisfying the right IR property. For every ring R, the following statements
are equivalent: (1) R is abelian; (2) R satisfies both the right and left IIP
properties; (3) R satisfies both the right and left IR properties. Moreover, the
following connections between the properties defined above hold:

abelianity = right IIP = right IR.

N. K. Kim et al. in [12, Examples 2.3 and 2.6] showed that both the converse
implications need not be true in general. As we saw in Corollary 2.6, semi-
commutative rings satisfy the ICZ property. N. K. Kim et al. in [12, Examples
2.11] showed that semicommutative rings need not satisfy the IR property.

Theorem 2.8.

1. If a ring R satisfies the right IR property, then es = 0 implies eRs = 0
for any e € E(R) and s € R. In particular, the ring R is right almost
abelian.

2. If a ring R is right almost abelian, then erese = erse holds for any
e € E(R) and r,s € R. In particular, in the ring R the equality
(ef)? = (ef)? holds for any e, f € E(R).

3. For every ring R, the following statements are equivalent:

a. R is abelian;
b. R satisfies the following conditions:
i. R is right almost abelian;
ii. eRt =0 implies te =0, and simultaneously tRe = 0 implies
et = 0, both the implications hold for any e € E(R) and
t € N(R).

Proof. In the proofs of all three statements, we let e € F(R) and r,s € R.
If R satisfies the right IR property, then es = 0 implies eRs = eRes = 0
by Theorem 2.7. If R is right almost abelian, then since se — ese € N(R)
and e(se — ese) = 0, from this it follows that eR(se — ese) = 0, and thus
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erse = erese. The implication a=-b is obvious. In the proof of the converse
implication b=-a, we additionally let ¢ € N(R). If et = 0, then eRt = 0, and
from this it follows that also te = 0. If te = 0, then since et € N(R) and
etRe = eteRe by statement 2, from this it follows that also et = e(et) = 0. In
consequence, R is abelian by Theorem 2.1. O

To summarize, the following connections between the properties discussed
in this paper hold:

= tight IIP = 1ight IR & jqempotent elements
abelianity < INCZ in a ring = ICZ
S left IIP = left TR = form a semigroup

In the case of unital rings, the converse implications also hold by Theorem
2.3. Example 3.1 shows that there exist nonabelian rings satisfying the right
ITP property. N. K. Kim et al. in [12, Example 2.6] showed that the right IR
property need not imply the right IIP property. Examples 3.2-3.4 show that
there exist rings whose idempotent elements form a semigroup, and which need
not satisfy the right IR property. Finally, Example 3.5 shows that there exist
rings satisfying the ICZ property, and whose idempotent elements need not
form a semigroup.

Theorem 2.9. For every ring R, the following statements are equivalent:

1. R is abelian;
2. R satisfies the following conditions:
a. ef € E(R) holds for any e, f € E(R);
b. eRt = 0 implies te = 0, and simultaneously tRe = 0 implies
et = 0, both the implications hold for any e € E(R) andt € N(R).

Proof. The implication 1 = 2 is obvious. In the proof of the converse implica-
tion 2 =1, welet e, f € E(R) and r € R. Since f+ fr— frf,f+rf— frf €
E(R), it follows that also e(f + fr — frf),(f +rf — frf)e € E(R). Right
multiplying e(f + fr — frf)e(f + fr — frf) = e(f + fr — frf) by f, and
then applying the assumption, we obtain efr(ef — fef) = 0, which means
that efR(ef — fef) = 0. Since ef € E(R) and fe — fef € N(R), from this
it follows that (ef — fef)ef = 0, and thus ef = fef. Similarly, left mul-
tiplying (f +rf — frf)e(f +rf — frf)e = (f +rf — frf)e by f we obtain
(fe—fef)Rfe =0. Since fe € E(R) and fe— fef € N(R), from this it follows
that fe(fe — fef) = 0, and thus fe = fef. In consequence, ef = fef = fe
holds for any e, f € E(R), which forces R to be abelian by Theorem 2.1. [

Corollary 2.10. For every semiprime ring R, the following statements are
equivalent:
1. R is abelian;

2. R is right almost abelian,
3. ef € E(R) holds for any e, f € E(R).
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Proof. The corollary is a simple consequence of Theorems 2.8 and 2.9. (I

Example 3.7 shows that even for prime rings, the ICZ property need not
imply the abelianity.

Theorem 2.11. For every von Neumann regular ring R, the following state-
ments are equivalent:

1. R is reduced,
2. R is abelian,
3. R satisfies the ICZ property.

Proof. Both the implications 1 = 2 = 3 are obvious. In the proof of the
implication 3 = 1, for any t € N(R) with t> = 0 we let * € R such that
t = txt. Since zt,tx € E(R) and (xt)(tx) = 0, from this it follows that
(zt)R(tz) = 0 by Theorem 2.5, and thus tRt = tatRtxt = 0. In consequence,
t=0. ([

3. Examples of rings satisfying ICZ property

For a ring R, we denote by R[X] and R(X) the rings of polynomials in
commuting and noncommuting variables {x |z e X } respectively, both with
coeflicients from R. The polynomial rings in commuting and noncommuting
variables {z | # € X} with zero constant term are denoted by Y zR[X]
and )y 2R(X) respectively. The formal power series ring with coefficients
from R is denoted by R][[z]]. We denote by M,,(R) and U, (R) the rings of nxn
matrices and upper triangular n X n matrices respectively, both with entries
from R. The subring of U,(R) of n x n matrices with fixed element on the
main diagonal is denoted by D, (R).

Example 3.1. Let P be a commutative ring with unit, and let

R= ZxP(X)/(xy—m | z,y € X)
reX

be a homomorphic image of the polynomial ring in noncommuting variables
with zero constant term. Every element of the ring R is expressed uniquely as
> zex QT wWhere o, € P equals zero for almost every » € X. For simplicity
of notation, we will write o instead of ).y a,7. In the ring R,

afy = Zaz(Zﬂy)(Z'Yz>f: Zam(Z'Yy)(Zﬁz)fza’Yﬁ

reX yeX zeX zeX yeX zeX

holds for any «, 3,7 € R. This evidently forces R to be right symmetric, and
hence to satisfy the right ITP property.

Simultaneously, ay = « holds for any o € R and y € X, in spite of that
y € E(R) and if ) _y o, = 0, then g = 0. This obviously means that the
ring R does not satisfy the left IR property.
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Example 3.2. Under the notation used in Example 3.1, let S = (§ &) be a
subring in the matrix ring Ms(R). Since every idempotent matrix in the ring S
is expressed uniquely as (§ 55" ) where e € E(R) and « € R, from this it follows
that &% € E(S) holds for any &,.% € E(S).

Simultaneously, for idempotent matrices & = (§ %) and & = (38) in the

ring S we have £ F # &F & # F&. This means that the ring S satisfies
neither the right nor left IR property.

Example 3.3. Let S be the same as in Example 3.2. A matrix (§ %) is
idempotent in the ring D2 (S) if and only if & € E(S) and &4/ + /& = 7, and
from this £4/& = 0. According to Example 3.2, & = (§ %) where € € E(R)
and a € R. Let & = (g g) where 3,7 € R. We conclude from

()G9 E D6 )60

that €8 = 0, hence that

,6565&+57_55a,6’y+5755a_ﬁ7

0 0 ~\0 0 0 0 0 0/\0 0/) \0 0/
and thus that 8 = e and v = e + €. Needless to say, every matrix of the
form (§ <) where & = (§5'), @ = (£P°%7), e € E(R) and o, 8,7 € R
with 8 = 0, is idempotent in the ring D5(S). We consider another idempotent
matrix of the form ( %) where F = ($90), B = ("0 "19°5%") ¢ € E(R)
and 0,7, 4 € R with ¢ = 0. Since &% = (561’ 5‘35), ep € E(R),

EB+ AT = <(577 +0/3>5¢ (en + 6)60¢<5 + ew)

and eg(en + B) = edn + B¢ = 0, from this it follows that

(¢ 2)(E -7 i) cooun

Simultaneously, for idempotent matrices E = (¢ 9) and F = (7 ) in

the ring D3(S) where & and .# are the same as in Example 3.2, we have
EF # EFE # FE. This means that the ring D5(S) satisfies neither the right
nor left IR property.
Example 3.4. Let P be a commutative ring with unit, and let

R = (21 P(X) + y1 P(X) + 22 P(X) + y2 P(X)) /(v — x5, wiy; — @,

vir; — v, vy —vi | 6,5 € {1,2})
be a homomorphic image of the polynomial ring in noncommuting variables
X = {xl,yl,xg,yg} with zero constant term. Every element of the ring R is
expressed uniquely as a1 71 + 171 + o3 + B2y2 where aq, f1, as, B2 € P. Since
(11 + P11 + @23 + B2¥2) (M1 T1 + 0171 + 1272 + 0272)

(1) = (a1 +az)(y1 + 1)1 + (81 + B2) (1 + 61)7r
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+ (o1 + a2)(v2 + 02)Tz + (B1 + B2) (2 + 62)7z,

from this it follows that an element a1%7 + B191 + @2T2 + B2¥2 is idempotent
in the ring R if and only if

@) (g +ao)(oq + B1) =1, (B1+ P2)(ar + Br) = B,
(a1 +ag)(ag + B2) = az, (P14 B2)(a2 + B2) = o,
and thus

e=a;+ f1+ax+ P2 € E(P).
Substituting 82 = & — a1 — 1 — a9 into (2) we obtain
(a1 +az)(oq + B1) = ax,
e(ar + B1) — (a1 + az)(a1 + B1) = B,
elag + ag) — (a1 + ao) (a1 + f1) = g,
€(2a1 + f1 + a2) — (a1 + az)(a1 + 1) = a1 + B1 + az,
and then substituting (a; + a2) (a1 + 81) = a1 into (3) we obtain (1 —¢)(a1 +
B1)=0and (1—¢)(a1+a2) =0. But (1—-¢)ayg = (1—¢)(a1+a2)(a1+51) =0.
From this we obtain
@ 1-c)ag=(1-e)p=(1—e)ag=(1—-¢)By =0,
(a1 +ag)(ar+ 1) =a1, ar+pi+as+pBr=c.

Needless to say, every element o177 + S171 + Tz + 27z satisfying (4) where

e € E(P), is idempotent in the ring R. Assuming (4) and additionally
(I=¢)n=0-9¢)51=(1-¢)y2=(1-9)0 =0,
(Mm+r2)(n+d)=n, Nn+dt+r+di=27e,

where ¢ € E(P), we can check that the element (1) is idempotent in the ring

R. This means that &% € E(R) holds for any &, % € E(R).

Simultaneously, for 71,73 € E(R) we have T1 73 # T1 Yz - T1 # Yz - T1. This
means that the ring R satisfies neither the right nor left IR property.

3)

Example 3.5. Let P be a reduced ring, and let

00 0 b
0 ¢c 00
R= 0 0 ¢ d | a,b,c,d € P
0 0 0 ¢
be a subring in the matrix ring My(P). A matrix

0 0 0 o
0 e 00
a 0 e d
0 0 0 e

is idempotent in the ring R if and only if e € E(P), a = ea, b = be and
d = ab + ed + de, and hence ab + ede = 0. From this it follows that d =
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—ede+ed+de, which means that (d—ed)? = 0 = (d—de)?, and, in consequence,
that d — ed = 0 = d — de by the assumption. Thus d = —ab = —eabe. Needless
to say, every matrix of the form

0 0 O be
lo eo0 o
“lea 0 e —eabe|’

0 0 O e

where e € E(P) and a,b € P, is idempotent in the ring R. We consider another
idempotent matrix of the form

0 0 0 df

p_ |0 f 0 0
| fe 0 f —fedf |7
0 00 f

where f € E(P) and ¢,d € P. If EF = 0, then ef = 0, from this it follows
that fPe = 0 by the assumption, and, in consequence, F'E = 0. This confirms
that the ring R satisfies the ICZ property.

Simultaneously,
0 00O 0 0 0 e 0 00 O
0 e 00 0 e 00 0 e 0O
e 0 e O OOGO_OOeegE(R)
0 0 0 e 0 0 0 e 0 0 0 e
for every nonzero e € E(P), in sprite of that both the matrices
0 00O 0 0 0 e
0 e 0O 0 e 00
e 0c ol foo e ofFR
0 0 0 e 0 0 0 e
Example 3.6. Let P be a ring, and let
0000
0 0 a O
R= 00 ¢ 0 | a,b,c € P
b 0 0 c

be a subring in the matrix ring My(P). Since every idempotent matrix in the
ring R is expressed uniquely as

0 0 0 O
0 0 ae O
0 0 e 0O}’
eb 0 0 e

where e € E(P) and a,b € P, from this it follows that if in the ring P the
property ef € E(P) holds for any e, f € E(P) (respectively, the ring P satisfies
the ICZ property), then the same is true for the ring R.



300 M. E. HRYNIEWICKA AND M. JASTRZEBSKA

Simultaneously, for matrices

000 0
00 ¢ 0
E=|y o o ol €BE®
e 0 0 e
and
0000 000 0
0000 00 e 0
A=10 00 0| B=|0o 0 0 o] ENR):
e 00 0 000 0

where e € E(P) is nonzero, we have EA = A and BE = B, in spite of that
AE = 0 and EB = 0. This means that the ring R satisfies neither the right
nor left IR property.

Example 3.7. Let P be a domain with unit, and let
R = (zP{x,y) +yP(z,y))/(«* — x)

be a homomorphic image of the polynomial ring in noncommuting variables
with zero constant term. Every element of the ring R is expressed uniquely as
> ait;, where a; € P equals zero for almost every i, w; € {E, y} U.# and
M ={y", T-yg"-T-y"? Ty T, T Ty TR, Y TG T
Yy T, g Ty Ty [ k> 1,n > 2,m0, 1m0, ..., kg1 > 1}, For the
proof of the primeness in the ring R, we let @ = ), ou; and b= >, Bitg from
R, both nonzero. Then we denote by o;u; and S,u; monomials of the lowest
degrees in the polynomials @ and b with a;; # 0 and S, # 0 respectively. Since
the coefficient of W; - 7 - Wy, in the polynomial @ -y - b equals o B # 0, from this
it follows that @- % - b # 0, and thus @Rb # 0. This confirms that the ring R is
prime.

If a polynomial € = T + oy + >, a;U; where w; € .#, is idempotent in the
ring R, then since €2 = 27 + >, Biw; for some §; € P, thus ¢ € E(P) = {0, 1}
and o = 0. We now assume that the polynomial € is nonzero with ¢ = 0,
and that the lowest degree of the monomials «;u; with «; # 0 is equal to n,
obviously n > 2. But € = @* = ), ; a;a;7; - w; and the lowest degree of the
monomials oo ;W; - w; with a5 # 0, is no smaller than 2n — 1 > n + 1. This
contradiction means that every nonzero idempotent polynomial in the ring R
is expressed uniquely as Z + ), o;T; for some o; € P and some u; € 4. In
consequence, € - f = 0 implies € = 0 or f = 0 for any €, f € E(R). This finally
confirms that the ring R satisfies the ICZ property.

Simultaneously, T-(T+T-§—T-y-T) = T+T-J—T-YT # T = (T+T-J—T-Y-T) T,
in spite of that Z € E(R). This means that the ring R is not abelian.
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4. Extending to the formal power series ring

N. K. Kim and Y. Lee in [11, Lamma 8] proved that under the assumption
on the abelianity of a ring R, every idempotent element in the ring R[[x]]
belongs in fact to the ring R (the proof of this lemma does not require R to be
unital). In consequence, also the rings R[[z]] and R[z] are abelian, the latter
as a subring in R[[z]]. The problem becomes more complicated when we leave
the class of abelian rings. For instance, under the notation used in Example
3.6, the element '+ > . (A + B)a"™ is idempotent in the ring R[[z]].

Theorem 4.1 was in fact proved by N. K. Kim et al. in [12, Theorem 2.14].
Methods used by these authors are different from those will be used by us.

Theorem 4.1. If in a ring R the equality ere = er holds for any e € E(R)
and r € R, then the same equality holds also in the ring R[[z]]. If particular,
if a ring R satisfies the right IR property, then also the rings R[[x]] and R]x]
satisfy the right IR property.

Proof. An element ), . e,x™ is idempotent in the ring R[[z]] if and only if
(5) Z eiej =ep

i+j=n
holds for every n > 0. Applying the mathematical induction on n > 0 we will
prove that

€; lf] = O,
(6) eiej = { .

0 otherwise

holds for any i,j € {O, 1,...,n}. The case when n = 0 follows immediately
from the fact that ey € E(R) by ( ). Suppose now that (6) holds for a fixed
(5) w

n > 0. Substituting (6) into (5) we obtain
n n+1
(7) eobnt1+eny1e0 = €o€nt1 +Z €i€nt1—i T Ent1€0 = Z €int+1—i = €ntl,
i=1 =0

then right multiplying (7) by ep we obtain epe,+1¢9 = 0, and hence
(8) egent1 =0
by the assumption. Substituting (8) into (7) we obtain
(9) ent1€0 = €nt1-
From (6), (8) and (9) we now conclude that
€ilnt1 = €iepent1 =0
for every i € {0, 1,....,.n+ 1}, and that
ent1€j = epti1€0e; =0

for every j € {1,2,...,n+1}.
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For any € = 3 ~jena™ € E(R[[z]]) and 7 = 3 S rn2™ € R[[z]] we now

obtain
:Z Z eirjek) :Z( Z eieorjek)x"

n>0 i+j+k=n n>0 i+j+k=n
= E E 61607’J606k E E eleor]eg
n>0 i+j+k=n n>0 i+j=n
= E E eleorj " = E ( E eirj)a:" =e-T.
n>0 i+j=n n>0 i+j=n (]

Theorem 4.2. Assume that in a ring R the property ef € E(R) holds for any
e, f € E(R). Then the following statements are equivalent:

€- i € E(R[[z]]) holds for any e, f € E(R[[z]]);
2. e- f € E(R][z]]) holds for any e € E(R) and f € E(R][z]]);
3. efme =0 holds for any e € E(R), 3, 5, faz™ € E(R[[z]]) and m > 1.

Proof. The implication 1 = 2 is obvious. In the proofs of both the implications
2=3and 3= 1, welet e € E(R) and ), -, fn2" € E(R[[z]]). Then, as we

know,
Z fifnfi = fn
=0

holds for every n > 0. In particular, fo € E(R), also efy, foe € E(R) by the
assumption, and hence e — efye, fo — foefo € E(R). Since (e —efpe) fo = 0 and
(fo — foefo)e = 0, from this it follows that

(e—efoe)Rfo =0 and foR(e—efoe) =0,

(fo— foefo)Re =0 and eR(fo — foefo) =0

by Theorems 2.4 and 2.5. Applying the mathematical induction on n > 0 we
will prove that

(11) efn =efoefn and fre= frefoe.

In the case when n = 0, the conclusion is evident. Suppose now that (e —
efoe)fi = 0 and fi(e — efoe) = 0 hold for a fixed n > 0 and every ¢ €
{O, 1,... ,n}. Then applying the induction hypothesis and (10) we conclude
that

(10)

(e — efoe) fus1 = (e — efoe) ( ZfifnJrlfi + frt1fo)

i=0
= Z (e - efoe)fifnJrlfi + (6 - €f0€)fn+1fo =0
i=0
and
n+1

frs1(e—efoe) = (fofnir + Z fifny1-i) (e — efoe)

i=1
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n+1

= fofat1(e —efoe) + Z fifns1—i(e — efoe) = 0.

i=1
In the proof of the implication 2 = 3, according to the assumption, we have

n

e~anx" :e-anx”~e-anm" = Z(Zefiefn_i)x".

n>0 n>0 n>0 n>0 i=0

In combination with (11), this gives

efm = Z efiefmfi = €f0€fm + Z efiefm,i = efm + Z efiefm—i
=0 i=1 i=1

for every m > 1. Thus
(12) > efiefmi=0

i=1
holds for every m > 1. Applying the mathematical induction on m > 1 we will
prove that

efme =0.

In the case when m = 1, from (12) it follows that efiefy = 0, and thus
efie = efiefoe = 0 by (11). Suppose now that ef;e = 0 holds for a fixed
m > 1 and every i € {1, 2,... ,m}. Then applying the induction hypothesis
and (12) we conclude that

m m+1

efmirefo =Y efiefmiii+efmirefo= Y efiefmir1-i =0,

i=1 =1

and, in consequence, that

efm+1e = efmirefoe =0
by (11).

In the proof of the implication 3 = 1, since efy, foe € E(R), according to
the assumption, we have efy fefo = 0 and foef,, foe = 0 for every m > 1. On
right multiplying the former and left multiplying the latter of the equalities by
e, and next applying (11) we obtain efy f,e = 0 and ef,, foe = 0 respectively.
From (10) we now see that

fofme = fofme — foefofme = (fo — foefo) fme =0

and

efmfo =efmfo—efmfoefo =efm(fo— foefo) =0.
Thus
(13) efme=0, fofme=0 and efnfo=0

hold for any e € E(R), >, 5 fn2" € E(R[[z]]) and m > 1. For every r € R
with ere = 0, since e + er € E(R), we have (e + er)fmn(e + er) = 0 and
(e +er)fmfo =0 Dby (13). On right multiplying the former of the equalities by
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e, and next applying (13) we obtain er f,,e = 0. On applying (13) in the latter
of the equalities we obtain er f,, fo = 0. Thus

if dere =0, then erf,e=0 and erf,fo=0
(14) hold for any e € E(R), Z fnz™ € E(R[[z]]) and m > 1.

n>0

Finally, let € = Y o en2™, [ = Y., 50 fnz" € E(R[[z]]). Since eq, fo €
E(R), from this it follows that egenmeo = 0 and foemfo = 0 hold for every
m > 1 by the assumption, and thus ege,, fr fo = 0 and foen, frnfo = 0 hold for
any m,n > 1 by (14). Simultaneously, epe,, fo = 0 and foe,, fo = 0 hold for
every m > 1 by (13). This confirms that

(15) eotmfnfo=0 and foenfnfo =0

hold for any m > 1 and n > 0. Applying the mathematical induction on n > 0
we will prove that

(16) €0€mfn = Oa

where m > 1. The case when n = 0 follows immediately from (15). Suppose
now that ege,, f; = 0 holds for a fixed n > 0 and every i € {O, 1,... ,n}. Then
applying the induction hypothesis and (15) we conclude that

n
6067nfn+1 = €0€m( Z fifn—i—l—i + fn+1f0)
=0

n
= eoemfifnri-i+ €obmfni1fo =0.
i=0

In the same way we may prove that also
(17) foemfrn=0 and epepe, =0

hold for any m > 1 and n > 0, the latter of the equalities being a consequence
of the former with € = f. Once more applying the mathematical induction on
k > 0 we will prove that

(18) exemfn =0,

where m > 1 and n > 0. The case when k = 0 follows immediately from (16).
Suppose now that e;e,, f, = 0 holds for a fixed k > 0 and every ¢ € {O, 1,..., k}.
Then applying the induction hypothesis and (17) we conclude that

k+1
ek+1€mfn = (€o€rt1 + E €i€ht1—i)€mfn
i=1
k+1
= €0€k+1€m fn + E eikt1—i€mfn = 0.
i=1
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In the same way we may prove that also
(19) fremfn=0 and egfime, =0

hold for any m > 1 and k,n > 0, the latter of the equalities being a consequence
of the former with € and f, which have swapped places with each other. From
what has already been proved, it follows that

(20) ekflemfn =0

holds for any k,l,m,n > 0 with [ +m > 1.
In order to prove that e- f =€- f-€- f, it remains to proved that

dooefi= Y. efienf
i+j=n i+j+k+l=n

holds for every n > 0. In the case when n = 0, the conclusion is evident. The
case when n = 1 follows immediately from (11) and (20). Suppose now that
n > 2 is fixed. Then applying (11), (18) and (20) we deduce that

Z eifiexfi

it jthtl=n
n—1
= z eifjerfi + eofoeofn + Z em foeo frn—m + en foeo fo
it jthl=n, j4E>1 m=1

n—1 m-—1

€ofn + Z ( Z eiem—i + €meo) foeo frn—m + enfo

m=1 =0
n—1 m—1 n—1
= eOfn + Z Z eiemfifOeOfnfm + emeo.fOeOfnfm + enfO
m=1 =0 m=1
n—1

60fn + Z 6m60.fn—m + 6nfO
m=1

n—1 m—1
=eofn + Z (6m - Z eiem—i)fn—m +enfo
m=1 i=0

n—1 m—1

n—1
eOfn + Z emfnfm - Z Z eiemfifnfm + enfO

m=1 m=1 i=0
n—1
=eofn + Z emfrn—m +enfo = Z ei.fj-
m=1 i+j=n O

Corollary 4.3. If in a ring R the property ef € E(R) holds for any e, f €
E(R), then the same property holds also in the rings R|[[z]] and R[z].
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Proof. In the proof of the corollary, we let e € E(R) and ) -, faa" €
E(R[[z]]). Then, as we know,

Z fifn—i = fn
1=0

holds for every n > 0, and, in particular, fo € E(R). Applying the mathemat-
ical induction on m > 1 we will prove that

(21) efofme=0, efmfoe=0, efne=0 and ef;fje=0,

where e € E(R), 3,5 faz™ € E(R[[z]]) and 4,5 € {1,2,...,m}. In the case
when m = 1, right multiplying fofi + fifo = f1 by fo we have

(22) fofifo=0.

From this it follows that fQ +f0f17 fQ —|—f1 fo S E(R), and also e(fo +f0f1)7 (fo +
fifo)e € E(R) by the assumption. On right multiplying e(fo + fof1)e(fo +

fof1) = e(fo + fof1) by foe, left multiplying (fo + fifo)e(fo + fifo)e = (fo +
fifo)e by efo, and next applying (11) and (22) we obtain

efofie=0 and efifoe=0

respectively. From this it follows that

(23) efie = e(fofi + fifo)e =0,
and thus e + ef; € E(R). But (23) holds for every e € E(R). On replacing e
by e + ef1 in (23), next right multiplying (e + ef1)fi(e + ef1) = 0 by e, and
finally applying (23) we obtain

efifie=0.
Suppose now that (21) holds for a fixed m > 1. Then both right and left

multiplying fo fm+1+ 2y fifm+1—i+fm+1fo = fms1 by fo, and next applying
the induction hypothesis we have

(24) Jofm+1fo=0.
In the same way as above we may prove that

efofm+1e =0 and efpy1foe =0.
From this and the induction hypothesis it follows that

efmire = e(fofms1 + Z fifmi1—i+ fmy1fo)e = 0.

i=1
In this way
(25) efje=0

holds for any e € E(R) and j € {1,2,...,m+ 1}, and thus e + ef; € E(R)
holds for every i € {1,2, co,m+ 1}. On replacing e by e + ef; in (25), next
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right multiplying (e + ef;)f;(e + ef;) = 0 by e, and finally applying (25) we
obtain
efifie=0
for any 4,5 € {1,2,...,m+1}.
The corollary now follows immediately from Theorem 4.2. O

Theorem 4.4. Assume that a ring R satisfies the ICZ property. Then for
any e =3 soenx™, f =3 < faa™ € E(R[[z]]), the following statements are
equivalent: -

l.e-f=0;

2. eg fo = 0;

3. e;f; =0 holds for any i,j > 0.

Proof. The implications 1 = 2 and 3 = 1 are obvious. In the proof of the

implication 2 = 3, we let Y~ e a™, > <, fnz™ € E(R[[z]]) with egfo = 0.
Then, as we know, - a

n n
Zeien—i =e, and Z fjfn—j = fn
i=0 =0

hold for every n > 0. Applying the mathematical induction on n > 0 we will
prove that

(26) eifi =0

holds for any ,j € {O, 1,... ,n}. The case when n = 0 follows immediately

from the assumption. Suppose now that (26) holds for a fixed n > 0. Applying

the mathematical induction on k € {0, 1,... ,n} we first will prove that
ekfn+1 =0.

In the case when k = 0, left multiplying Z?:o fifnt1—j+ fns1fo = fnt1 by eo,
and next applying the induction hypothesis and Theorem 2.5 we have eg f,,+1 =
0. Suppose now that e;f,+1 = 0 holds for a fixed k € {O, 1,....,n— 1} and

every i € {0,1,...,k}. Then left multiplying Z?:o fifnt1—j + fag1fo = farr

. L k41
by er+t1, right multiplying eper+1 + lel €i€kt1—i = €k+1 by fni1, and then

applying the induction hypothesis we obtain
ekt1fnt1fo = €xt1fnt1  and  epept1fnt1 = €pt1fnta
respectively. From this and Theorem 2.5 we now conclude that
€kt+1fn+1 = €x+1fnt1fo = €o€r41 fut1fo = 0.

In the same way we may now prove that e,i1f,, = 0 holds for every m &€
{0,1,...,n}, and also e,41 fre1 = 0. O

Corollary 4.5. If a ring R satisfies the ICZ property, then also the rings R[[x]]
and R[z] satisfy the ICZ property.

Proof. The corollary is a simple consequence of Theorem 4.4. (I
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A ring R is said to be Armendariz if whenever polynomials f(z) = fo +
fiz+ - fraa™, g(x) = go + g1+ -+ + gna" € Rz satisfy f(x) - g(x) =0,
then f;g; = 0 for any 7 € {O, 1,... ,m} and j € {O, 1,... ,n}. E. P. Armendariz
in [2, Lemma 1] proved that reduced rings with unit are Armendariz.

Theorem 4.6. For every ring R, the following statements are equivalent:

1. R satisfies the ICZ property;

2. if polynomials e(x) = ey + e12 + -+ + epz™, f(x) = fo+ fix +--- +
fax™ € E(Rz]) satisfy e(x) - f(x) = 0, then e;f; = 0 holds for any
i€{0,1,...,m} and j € {0,1,...,n};

3. if polynomials e(x) = ey + erx, f(x) = fo + frx € E(R[z]) satisfy
e(x) - f(z) =0, then e;f; = 0 holds for any i,j € {0,1}.

Proof. The implication 1 = 2 is a simple consequence of Theorem 4.4. The
implication 2 = 3 is obvious. In the proof of the implication 3 = 1, we let
e,f € E(R) with ef = 0. Then f + fex,e — fe — fex € E(R[z]), and since
(f + fex)(e — fe — fex) = 0, from this it follows that also fe = 0 by the
assumption. ([
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