1 |
H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc. 2 (1970), 363-368.
DOI
|
2 |
G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), no. 6, 567-580.
DOI
|
3 |
W. Chen, On semiabelian -regular rings, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 63171, 10 pp.
DOI
|
4 |
P. M. Cohn, Reversible rings, Bull. Lond. Math. Soc. 31 (1999), no. 6, 641-648.
DOI
|
5 |
J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
|
6 |
J. Han, Y. Lee, and S. Park, Semicentral idempotents in a ring, J. Korean Math. Soc. 51 (2014), no. 3, 463-472.
DOI
|
7 |
V. K. Harchenko, T. J. Laey, and J. Zemanek, A characterization of central idempotents, Bull. Acad. Pol. Sci. Ser. Sci. Math. 29 (1981), no. 1-2, 43-46.
|
8 |
I. Kaplansky, Rings of operators. Notes prepared by S. Berberian with an appendix by R. Blattner, Mathematics 337A, summer 1955.
|
9 |
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
DOI
|
10 |
N. K. Kim, Y. Lee, and Y. Seo, Structure of idempotents in rings without identity, J. Korean Math. Soc. 51 (2014), no. 4, 751-771.
DOI
|
11 |
J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.
DOI
|
12 |
G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520.
DOI
|
13 |
J. Wei, Almost Abelian rings, Commun. Math. 21 (2013), no. 1, 15-30.
|
14 |
L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, in Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
|
15 |
B. H. Shafee and S. K. Nauman, On extensions of right symmetric rings without identity, Adv. Pure Math. 4 (2014), no. 12, 665-673.
DOI
|
16 |
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 (1974).
DOI
|
17 |
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473.
DOI
|
18 |
D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852.
DOI
|