• Title/Summary/Keyword: Zero Effluent

Search Result 38, Processing Time 0.028 seconds

A Study on the Evaluation for Operations of Public Sewage Treatment Plants Using Statistics Technique (통계기법을 이용한 공공하수처리시설의 운영실태 평가방법 연구)

  • Choi, In-Cheol;Ahn, Tae-Ung;Yu, Soon-Ju;Chung, Hyen-Mi;Kwon, Oh-Sang;Kim, Won-Ky;Yeom, Ick-Tae;Son, Dae-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.524-531
    • /
    • 2014
  • Korea has been trying to manage water quality of rivers and lakes in many ways. Ministry of Environment is making continuous efforts of operation control improvement such as strengthening effluent standards in sewage treatment plants and expanding Tele-Monitoring System (TMS). However, evaluation method for operations of sewage treatment plants and establishment system of effluent standards are inadequate. The objective of this study is to evaluate for operations of sewage treatment plants using statistics technique such as frequency analysis, percentile, normal distribution analysis. We used the effluent data (BOD, COD, SS) collected at 299 plants in 2012. The values were very low by comparison with standards. The Data followed a normal distribution. We think that distribution characteristics are closely related with effluent standards, especially T-P and BOD. Statistics technique attempted in this study can be used to evaluate for operations of sewage treatment plants and assess the appropriateness of effluent standards based on TBEL(Technology-based effluent limitation). And, this technique can be used to figure out the overall level of plants, the status of each plant and the favorable treatment process for each item (BOD, COD etc.). Data acquired through this method can be used to improve facilities and operation techniques and decide on a sewerage policy.

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

A Scheme on Reduction of NPP Liquid Effluent Activity

  • Kim, Wi-Soo;Yang, Yang-Hee;Kim, Hee-Guen
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • Recently each domestic NPP has achieved zero release in liquid effluent activity. However, when looking back past experiences in world nuclear power operation, it is thought that another maximum activity reduction in the released liquid effluent just prior to falling it into environment, if possible, will bring a good effect in PA viewpoint. As the intent of applying the safety concept of diversity to conducting the above activity reduction measure, a scheme passing that effluent through the Deposition Bed just before discharging it into ocean environment was divised. Both Zeolite and "the mixed "Anthracite-sand" were derived as the main activity adsorption medium used in the Deposition Bed, and the schematic drawings of this Bed were presented.

Application of Micropaticle Systems in Water Circuit Closure Programs

  • Howard Johnson;Ha, Derek A.rrington
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.5
    • /
    • pp.12-20
    • /
    • 2001
  • The consequence of water system closure and reduced water consumption in Paper Mills is increased white-water conductivity associated with increased total dissolved solids. This leads to difficulties man-aging the wet end chemistry of paper machines, mainly due to stearic hindrance effects on wet end chemical additives. This in turn causes poor productivity and Inefficient chemicals usage. The success of a number of projects is reported. The application and development of new multi-component micro-particle systems which can further assist in achieving a significant degree of system closure or Zero Effluent is described.

  • PDF

Decolorization and organic removal characteristics of a SBR process combined with zero-valent iron column (ZVI (Zero-Valent Iron)를 조합한 SBR 공정의 색도 및 유기물 제거 특성)

  • Choi, YoungGyun;Park, ByungJu;Kim, SeongHong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • The purpose of this study was to evaluate the performances of zero-valent iron (ZVI) combined SBR (Z-SBR) process in decolorization and organic removal of synthetic dye wastewater. The batch test for optimizing the operation parameters of ZVI column showed that the appropriate EBCT was around 11 min and the pH of the dye wastewater was below 7.0. During the step increase of influent color unit from 300 to 1,000cu, about 53 to 79% decolorization efficiency could be achieved in control SBR (C-SBR, without ZVI column), which resulted from destroying azo bond of synthetic dye in anaerobic condition. For the same influent color loading, Z-SBR showed always higher decolorization efficiency than C-SBR with an aid of ZVI reducing power. The TCOD concentration in Z-SBR effluent was 20-30mg/L lower than C-SBR effluent although the TCOD before and after ZVI column was nearly same. It means that breakdown of azo bond by ZVI reducing power could increase biodegradability of synthetic dye wastewater.

Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area (인공습지의 농촌지역 오수정화시설에 적용가능성 연구)

  • 윤춘경;권순국;권태영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF

Study on Natural Wastewater Treatment Systems by Constructed Wetland for Rural Area (인공습지에 의한 농촌오수처리에 관한 연구)

  • 윤춘경;권순국;김형중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.55-63
    • /
    • 1997
  • Constructed wetland system which can be applied to the rural wastewater treatment system was examined by pilot plant in Kon-Kuk University. Hydraulic loading rate of wastewater was about 0.16m$^3$/m$^2$. day and theoretical detention time in the system was 1.38 days. The effluent of the septic tank for the school building was applied as inflow to the system. The influent concentration of DO was zero but effluent was up to 4.37mg/${\ell}$ which implies that oxygen was supplied enough from atmosphere by reaeration to support biological activity of the system. Average influent concentration of BOD was 104mg/${\ell}$ and effluent was 24mg/${\ell}$ with average removal rate of 76%. Average influent concentration of COD was 215mg/${\ell}$ and effluent was 63mg/${\ell}$ with average removal rate of 70 % . Average influent concentration of SS was 78mg/${\ell}$ and effluent was 10mg/${\ell}$ with average removal rate of 87%. Two components, BOD and SS, are regulated by law to keep maximum water quality standard of 80mg/${\ell}$ when daily outflow rate is less than 100$m^3$/day which is the case of most rural communities. Therefore, the results from the experiment showed that constructed wetland system can meet the water quality standard easily. Average influent concentration of total nitrogen was 165mg/lwhich is relatively higher than normal wastewater, and effluent was about 156mg/${\ell}$ with average removal rate of only 6%. Average influent concentration of total phosphorus was 41 mg/${\ell}$ and effluent was 6mg/${\ell}$ with average removal rate of 87%. Overall, constructed wetland system was thought to be effective to treat wastewater if nitrogen removal mechanism is improved. Considering low cost, less maintenance, and high treatability, this system can be a practical alternative for the wastewater treatment in rural area The experiment was performed during the summer and fall season, and treatment efficiency of the system is expected to decrease in low temperature. therefore, further study including temperature is required to evaluate feasibility of the system more in detail.

  • PDF

Assessment of Technology Based Industrial Wastewater Effluent Limitation and Standards for the Application of Domestic Industries (II) : Analysis Pollution Loads Contribution by Risk Assessment Indicator in Industrial Wastewater (처리기술에 근거한 산업폐수 배출허용기준 국내 적용성 연구(II) : 산업폐수 위해성 지표를 이용한 오염부하 기여도 분석)

  • Kim, Kyeongjin;Kim, Wongi;Jung, Sanggu;Jung, Jinyoung;Kim, Jaehun;Kim, Sanghun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.191-199
    • /
    • 2010
  • Introduction of Technology-Based Effluent Limitations (TBELs) concepts into Korea requires extensive and through analyses on the expected pollutants reduction effects and the cost factor for the industry side. In addition, the TEBLs should be optimized for the regulatory environments of Korea and be applied in a progressive manner to minimize the undesirable effects. It is also necessary to assess the contribution of each industrial categories's to the pollution of natural water bodies to find the priority of TEBLs application. For these purposes, the pollution loads of various industrial categories were analyzed using risk assessment indicator based on Toxic Weighting Factors (TWFs). First, the TWFs were calculated for the pollutants regulated using the method adopted by USEPA. And the effluent characteristics of the eighty two categories of industry in Korea were investigated. Although the analytical data on the wastewater from different industrial categories are relatively limited, the results from two previous studies were used. The first study, conducted by the National Institute of Environmental Research in 2001~2004, investigated the wastewater characteristics from 255 industrial sources covering the major 20 industrial categories. The second study includes more recent analytical data for the wastewater from 500 industrial sources, covering all the 82 industrial categories. In the result of the pollution loads analyses, the category of 'Synthetic and Chemical manufacture' was found to show the highest raw pollution load. On the other hand the category of 'Ion & Steel manufacture' was found to show the highest effluent pollution loads, which can be considered as the real impacts on natural water streams. The top five categories occupied 62.2% of the total effluent pollution loads. Through the analyses, the relative importances of each industrial categories and the priorities of TEBL-based pollution reduction were determined.

Continuous removal of phosphorus in water by physicochemical method using zero valent iron packed column (영가철 충진 컬럼을 이용한 연속적인 물리화학적 수중 인 제거)

  • Jeong, Jooyoung;Ahn, Byungmin;Kim, Jeongjoo;Park, Jooyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.439-444
    • /
    • 2013
  • Excessive phosphorus in aquatic systems causes algal bloom resulting in eutrophication, DO depletion, decline in recreational value of water and foul tastes. To treat wastewater containing phosphorus including effluent of wastewater treatment plant, the continuous experiments were performed by using electrochemical way. The spherical ZVI and silica sand which act as physical filter are packed at appropriate volume ratio of 1:2. Electric potential is applied externally which can be changed as per the operational requirement. The results indicate that optimum hydraulic retention time of 36 minutes (10 mL/min at 1 L reactor) was required to meet the effluent standards. Lower concentrations of phosphorus (<10 mg/L as phosphate) were removed by precipitation by contact with iron. Thus, additional electric potential was not required. In order to remove high concentration phosphorus around 150 mg/L as phosphate, external electric potential of 600 V was applied to the reactor.

Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system

  • Corey, Peter;Kim, Jang K.;Duston, Jim;Garbary, David J.
    • ALGAE
    • /
    • v.29 no.1
    • /
    • pp.35-45
    • /
    • 2014
  • Palmaria palmata was integrated with Atlantic halibut Hippoglossus hippoglossus on a commercial farm for one year starting in November, with a temperature range of 0.4 to $19.1^{\circ}C$. The seaweed was grown in nine plastic mesh cages (each $1.25m^3$ volume) suspended in a concrete sump tank ($46m^3$) in each of three recirculating systems. Two tanks received effluent water from tanks stocked with halibut, and the third received ambient seawater serving as a control. Thalli were tumbled by continuous aeration, and held under a constant photoperiod of 16 : 8 (L : D). Palmaria stocking density was $2.95kg\;m^{-3}$ initially, increasing to $9.85kg\;m^{-3}$ after a year. Specific growth rate was highest from April to June (8.0 to $9.0^{\circ}C$), 1.1% $d^{-1}$ in the halibut effluent and 0.8% $d^{-1}$ in the control, but declined to zero or less than zero above $14^{\circ}C$. Total tissue nitrogen of Palmaria in effluent water was 4.2 to 4.4% DW from January to October, whereas tissue N in the control system declined to 3.0-3.6% DW from April to October. Tissue carbon was independent of seawater source at 39.9% DW. Estimated tank space required by Palmaria for 50% removal of the nitrogen excreted by 100 t of halibut during winter is about 29,000 to $38,000m^2$, ten times the area required for halibut culture. Fifty percent removal of carbon from the same system requires 7,200 to $9,800m^2$ cultivation area. Integration of P. palmata with Atlantic halibut is feasible below $10^{\circ}C$, but is impractical during summer months due to disintegration of thalli associated with reproductive maturation.