• Title/Summary/Keyword: Zero Current Switch

Search Result 237, Processing Time 0.022 seconds

Improved Zero-Current-Switching(ZCS) PWM Switch Cell with Minimum Additional Conduction Losses

  • Park, Hang-Seok;Cho, B.H.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC to DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of DC to DB PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype converter operating at 40 kHz.

  • PDF

Novel Zero-Current-Switching (BCS) PWM Switch Cell Minimizing Additional Conduction Loss

  • Park, Hang-Seok;Cho, B.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.37-43
    • /
    • 2002
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of dc to dc PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of dc to dc PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5㎾ prototype boost converter operating at 40KHz.

New Zero-Current-Transition (ZCT) Circuit Cell Without Additional Current Stress

  • Kim Chong-Eun;Choi Eun-Suk;Youn Myung-Joong;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.294-298
    • /
    • 2003
  • In this paper, the new zero-current-transition (ZCT) circuit cell is proposed. The main switch is turned-off under the zero current and zero voltage condition, and there is no additional current stress and voltage stress in, the main switch and the main diode. The Auxiliary switch is turned-off under the zero voltage condition, and the main diode is turned-on under the zero voltage condition, The resonant current required to obtain the ZCT is small and regenerated to the input voltage source. The operational principles of the boost converter integrated with the proposed ZCT circuit cell is analyzed theoretically and verified by the simulation and experimental result. Index terms - zero-current-transition (ZCT), zero-current- switching (ZCS), zero-voltage-switching (ZVS)

  • PDF

A ZCT PWM Boost Converter using parallel MOSFET switch (병렬 MOSFET 스위치를 이용한 ZCT PWM Boost Converter)

  • Kim Tea-Woo;Hur Do-Gil;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.759-762
    • /
    • 2002
  • A ZCT(Zero Current Transition) PWM(Pulse-Width-Modulation) boost converter using parallel MOSFET switch is proposed in this paper. The IGBT(main switch) of the proposed converter is always turned on with zero current switching and turned off with zero current/zero voltage switching. The MOSFET(auxiliary switch) is also operates with soft switching condition. In addtion to, the proposed converter eliminates the reverse recovery current of the freewheeling diode by adding the resonant inductor, Lr, in series with the main switch. Therefore, the turn on/turn off switching losses of switches are minimized and the conduction losses by using IGBT switch are reduced. In addition to, using parallel MOSFET switch overcomes the switching frequency limitation occurred by current tail. As mentioned above, the characteristics are verified through experimental results.

  • PDF

Novel Zero-Current-Transition PWM DC/DC Converters (새로운 Zero-Current-Transition PWM DC/DC 컨버터)

  • 이민광;이동윤;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • In this paper, a novel Zero-Current-Transition (ZCT) technique, which provides Zero-Current-Switching (ZCS) turn-off of the main switch, the main diode and the auxiliary switch, is presented. The proposed auxiliary circuit consists of minimum elements only one auxiliary switch, resonant inductor and resonant capacitor. Also the reduced di/dt, which is obtained by resonant inductor, helps soft turn-on of the main switch. Besides, to eliminate the additional conduction loss and current stress on main switch, a topological variation was performed. The theoretical analysis and the operation principle of the new ZCT techniques are described in detail with a boost converter as an example. To verify the validity of the proposed ZCT techniques, the simulation and the experiment were performed under 1kW output power and 100kHz switching frequency.

  • PDF

New Zero-Current-Transition (ZCT) Circuit Cell Without Additional Current Stress

  • Kim, C.E.;Park, E.S.;G.W. Moon
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.215-223
    • /
    • 2003
  • In this paper, a new zero-current-transition (ZCT) circuit cell is proposed. The main switch is turned-off under the zero current and zero voltage condition, and there is no additional current stress and voltage stress in the main switch and the main diode, respectively. The auxiliary switch is turned-off under the zero voltage condition, and the main diode is turned-on under the zero voltage condition. The resonant current required to obtain the ZCT condition is relatively small and regenerated to the input voltage source. The operational principles of a boost converter integrated with the proposed ZCT circuit cell are analyzed and verified by the simulation and experimental results.

Zero voltage and zero current switched converters (영전압 영전류 스위칭 방식의 컨버터)

  • 정규범
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.120-124
    • /
    • 1998
  • In this paper, new zero voltage and zero current switched PWM(Pulse Width Modulated) converters are suggested. The main and auxiliary switch of the converters satisfy soft switching conditions, which are zero voltage or zero current switching of the switches. The switching characteristics of the proposed converters are experimentally verified by boost typed converter, which has 250 kHz switching frequency. For the 250 kHz operation, turn on period of auxiliary switch is about 1/40 for switching period of 4 ${\mu}\textrm{s}$. Therefore, the conduction loss of auxiliary switch is reduced.

  • PDF

Optimization Design for the Use of Mechanical Switch in Z-source DC Circuit Breaker (Z-source 직류 차단기의 기계식 스위치 적용을 위한 최적화 설계)

  • Lee, Hyeon Seung;Lee, Kun-A
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Circuit breakers are a crucial factor in ensuring the safety of a Direct Current (DC) grid. One type of DC circuit breaker, the Z-source DC circuit breaker (ZCB), uses a thyristor, which is a type of semiconductor switch. In the event of a fault in the circuit, the ZCB isolates the fault by generating a zero crossing current in the thyristor. The thyristor quickly and actively isolates the fault while generating a zero crossing current, but thyristor switch cannot control turn-off and the allowable current is lower than the current of the mechanical switch. Therefore, it is best to use a mechanical switch with a high allowable current capacity that is capable of on/off control. Due to the slow reaction time of mechanical switches, they may not isolate the fault during the zero crossing current time interval created by the existing circuit. In this case, the zero crossing current time can be increased by using the property that hinders the rapid change in the current of the inductor. This paper will explore whether adding system inductance to increase the zero crossing current time interval is a solution to this problem. The simulation of changing inductor and capacitor (LC) of the circuit is repeated to find an optimal change in the zero crossing current time according to the LC change and provides an inductor and capacitor range optimized for a specific load. The inductor and capacitor range are expected to provide optimization information in the form LC values for future applications of ZCB's using a mechanical switch.

Development of Dimmable Magnetic Ballast for HID-Lamps by Zero Current Switching on SCRs (SCR의 영전류 스위칭에 의한 HID 램프용 조도제어형 자기식 안정기 개발)

  • Lee, Hyeon-Jin;Yoo, Jae-Woong;Park, Chong-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.9-16
    • /
    • 2010
  • In this paper, we have proposed a new dimmable magnetic ballast for HID(High Intensity Discharge) lamps consisted of AC switches to variate inductance value by using Silicon Controlled Rectifiers and the isolated zero current detector on inductor. Conventional dimming ballast has used relays or Solid State Relays in AC switches. However, a relay is difficult to zero current switching, because it has long operating time(10[ms]), and price competitiveness of SSR is very low. The proposed AC switches are suitable to switch at zero inductor current and it is accurately detected by using a opto-coupler. SCR is cheaper than SSR, and it is suitable to switch at zero inductor current because SCR is automatically turned off under holding current at no gate signal. Operating principles, simulation results and experimental results of the proposed ballast are described.

Improved Zero-Current- Transition (ZCT) PWM Switch Cell (개선된 영전류 과도상태 PWM 스위치 셀)

  • Choi, Hang-Seok;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.950-952
    • /
    • 2001
  • This paper proposes a new zero-current transition (ZCT) pulse-width modulation (PWM) switch cell that overcomes the limitations of the conventional ZCT converters. The proposed ZCT cell provides zero-current-switching (ZCS) condition for the main switch and the auxiliary switch. The conduction loss and current stress of the main switch are minimized, since the circulating current for the soft switching does not flow through the main switch. The proposed ZCT PWM switch cell is suitable for the high power applications employing IGBTs. Design guidelines with a design example are described and verified by experimental results from the 1 kW prototype boost converter operating at 70kHz.

  • PDF