• Title/Summary/Keyword: Zeolite ZSM-5

Search Result 70, Processing Time 0.021 seconds

Synthesis and Characterization of Zeolite Composite Membranes (I):Synthesis of ZSM-5 Type Zeolites (제올라이트 복합 분리막의 합성 및 특성화(I): ZSM-5계 제올라이트의 합성)

  • 현상훈;김준학;송재권
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1064-1072
    • /
    • 1996
  • The synthetic conditions and characteristics of ZSM-5 type zeolites (ZSM-5/silicalite) for the preparation of the zeolite composite membranes for gas separation were investigated. ZSM-5 zeolites could be synthesized by the hydrothermal treatment of the mixture of colloidal silica sol aluminum nitrate sodium hydroxide and TPABr at a temperature range of 150-17$0^{\circ}C$ in the autoclave. Silicalties were done from the solution of water glass water and TPABr. Their crystalline structures transformed from orthorhombic to monoclinic from and their pore structures of three-dimensional channels were opened as TPABr filling channels was burned off at the calcination temperature of 50$0^{\circ}C$. The specific surface area of the calcined zeolite was about 360 m3/g and its surface property was hydrophobic. Crystal sizes of ZSM-5 and silicalite were 0.5-1.0${\mu}{\textrm}{m}$ and 8-10${\mu}{\textrm}{m}$ respectively having no change due to the calcination. In particular the shape and the size of the ZSM-5 type zeolite were sensitively varied with silica sources and concentrations of reaction solutions/sols.

  • PDF

Synthesis and Characterization of Zeolite Composite Membranes (II): Synthesis and $CO_2$ Separation Efficiency of ZSM-5 Zeolite Composite Membranes (제올라이트 복합 분리막의 합성 및 특성화(II): ZSM-5 제올라이트 복합막의 합성 및 $CO_2$ 분리 효율)

  • 현상훈;송재권;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.747-757
    • /
    • 1997
  • ZSM-5 zeolite composite membranes have been synthesized from a silica sol solution containing TPABr as an organic template by the dip-coating and the pressurized-coating hydrothermal treatment techniques. The CO2 separation efficiency of synthesized composite membranes was also investigated. The permeation mechanism of CO2 through ZSM-5 membranses was the surface diffusion, and that of N2, O2, and He gases was Knudsen diffusion or activated diffusion depending on the synthetic method of membranes and the measurement temperature. The CO2/N2 separation factor of the membrane prepared by the dip-coating hydrothermal treatment was 2.5 at about 12$0^{\circ}C$, while the ZSM-5 composite membrane synthesized by the pressurized-coating hydrothermal treatment technique showed the CO2/N2 separation factor of 9.0 at room temperature higher than that ever reported in the literature.

  • PDF

Fabrication and Characterization of Titanate Nanotube Supported ZSM-5 Zeolite Composite Catalyst for Ethanol Dehydration to Ethylene

  • Wu, Liangpeng;Li, Xinjun;Yuan, Zhenhong;Chen, Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.525-530
    • /
    • 2014
  • Titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst was fabricated by decorating ZSM-5 zeolite on the hydrothermally synthesized titanium dioxide via hydrothermal process and subsequent annealing. The catalyst was characterized by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM) and Nitrogen adsorption-desorption (BET). The surface acidity of the catalyst was measured by means of Fourier transform infrared (FT-IR) spectrum of pyridine adsorption. And the catalytic activity for ethanol dehydration to ethylene was evaluated in a continuous flow fixed-bed reactor. Attributed to the increase of the effective surface acid sites caused by titanium dioxide nanotube as electron acceptor, titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst exhibits strongly enhanced activity for ethanol dehydration to ethylene.

Separation of Trichlorinated Hydrocarbons by ZSM-5 Zeolite Membrane (ZSM-5 제올라이트 분리막에 의한 3가 염소화합물의 투과증발 분리)

  • Lee Yong-Taek;Sim Eun-Young;Ahn Hyo-Seong
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.159-166
    • /
    • 2006
  • MFI(Mobil Five) structured hydrophobic ZSM-5 zeolite membrane was used for selective pervaporation of trichlorinated organic compounds(trichloromethane, trichloroethane, trichloroethylene) from their aqueous solutions. ZSM-5 zeolite membrane was hydrothermally synthesized on the inside of a porous stainless steel tube by secondary growth employing ZSM-5 seed powders. Separation factors for each binary mixtures were observed $16{\sim}66$ for trichloromethane/water, $3.3{\sim}4.6$ for trichloroethane/water and $1.4{\sim}8$ for trichloroethylene/water at the experimental conditions of the feed mole fraction from 0.0001 to 0.001 with temperature ranged $25{\sim}35^{\circ}C$.

Effect of Copper on the Properties of ZSM-5 Catalyst Fabricated by Mechanical Alloying Method (기계적합금화법에 의해 제조된 ZSM-5촉매특성에 미치는 Cu의 영향)

  • 안인섭
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.153-158
    • /
    • 1996
  • The exhaust gas from vehicle engines and industrial boilers contains considerable amount of harmful nitrogen monoxide(NO) which causes air pollusion and acid rain. To remove NO catalytic reduction processes using Cu ion exchanged ZSM-5 zeolite have been widely studied. In this study, an attempt was made to fabricate Cu/zeolite catalyst by using high energy ball mill. The catalytic performance of ball milled Cu/ZSM-5 zeolites is analyzed and optimum copper contents was determined. The processing variables were reaction temperature and copper contents. Complete removal of NO gas was obtained at the temperature of 553 K on 10wt.% CU/ZSM-5 mechanically alloyed composite powders. Mechanically alloyed CU/ZSM-5 catalyst showed homogeneous distribution of Cu in ZSM-5.

  • PDF

A Study on the Catalytic Decomposition of Nitric Oxide over Cu-ZSM5 Catalysts (Cu-ZSM5 촉매상에서 일산화질소 분해반응에 대한 연구)

  • Park, Dal-Ryung;Park, Hyung-Sang;Oh, Young-Sam;Cho, Won-Ihl;Paek, Young-Soon;Pang, Hyo-Sun
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-33
    • /
    • 1997
  • Highly crystalline Cu-ZSM5 was prepared without using organic templates. Several ion exchange treatments between Na$\^$+/ and Cu$\^$2+/ brought about excess loading of copper ions on the ZSM5 zeolite and the resultant zeolite was active for the decomposition of NO. This indicates that the copper ions excessively loaded on the ZSM5 zeolite are effective for the NO decomposition. When oxygen was added to a reactants, the conversion of NO decreased. NO, O$_2$TPD experiments explained that the active sites for NO decomposition and the adsorption sites of O$_2$, were the same. O$_2$, at the surface of ZSM5 zeolite was desorbed incompletely after pretreatment at 500$^{\circ}C$, and CU-ZSM5 pretreated with H$_2$at 500$^{\circ}C$ showed promoted activity at the start of reaction. Thus, it seems clear that O$_2$, adsorbed ai the surface of catalyst inhibits the catalytic activity.

  • PDF

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts (구리 제올라이트와 철 제올라이트 촉매에 의한 질소산화물의 암모니아 선택적 촉매환원반응 특성)

  • Ha, Ho-Jung;Hong, Ju-Hwan;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The $NH_3$-selective catalytic reduction (SCR) reaction of NO with excess of oxygen were systematically investigated over Cu-zeolite and Fe-zeolite catalysts. Cu-zeolite and Fe-zeolite catatysts to adapt the SCR technology for mobile diesel engines were prepared by liquid ion exchange and incipient wetness impregnation of $NH_4$-BEA and $NH_4$-ZSM-5 zeolites. The catalysts were characterized by BET, XRD, FE-TEM (field emission transmission electron microscopy) and SEM/EDS. The SCR examinations performed under stationary conditions showed that the Cu-exchanged BEA catalyst revealed pronounced performance at low temperatures of $200{\sim}250^{\circ}C$. With respect to the Fe-zeolite catalyst, the Cu-zeolite catalyst showed a higher activity in the SCR reaction at low temperatures below $250^{\circ}C$. BEA zeolite based catalyst exhibited good activity in comparison with ZSM-5 zeolite based catalyst at low temperatures below $250^{\circ}C$.

Dehydration of Methanol to Dimethyl Ether over ZSM-5 Zeolite

  • Jiang, Shan;Hwang, Jin-Soo;Jin, Tai-Huan;Cai, Tianxi;Cho, Wonihl;Baek, Young-Soon;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.185-189
    • /
    • 2004
  • Methanol dehydration to dimethyl ether (DME) has been investigated over ZSM-5 zeolites and compared with that of ${\gamma}-Al_2O_3$. Although the catalytic activity was decreased with an increase in silica/alumina ratio, the DME selectivity increased. H-ZSM-5 and NaH-ZSM-5 zeolites were more active for conversion of methanol to DME than ${\gamma}-Al_2O_3$. $Na^+$ ion-exchanged H-ZSM-5 (NaH-ZSM-5) shows higher DME selectivity than H-ZSM-5 due to the selective removal of strong acid sites.

Preparation and Characterization of Titanium Dioxide Embedded onto ZSM-5 Zeolite

  • A. Yu. Stakheev;Lee, C. W.;Chong, P. J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.530-533
    • /
    • 1998
  • Chemical vapor deposition of $TiCl_4$ followed by the hydrolysis thereof at elevated temperatures was employed for the formation of $TiO_2$ clusters inside ZSM-5 matrix. BET and XRD revealed that the zeolite structure remains intact. XPS, Raman, FTIR, and UV-VIS reflectance spectroscopy indicated that $TiO_2$ particles thus formed are extremely small and localized inside the zeolite matrix.