• Title/Summary/Keyword: Zeolite NaA

Search Result 296, Processing Time 0.025 seconds

Adsorption Properties of U, Th, Ce and Eu by Myogi Bentonite Occurring in Japan (일본 묘기광산 벤토나이트의 물리화학적 성질 및 U, Th, Ce 및 Eu 흡착특성)

  • Song Min-Sub;Koh Sang-Mo;Kim Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.183-194
    • /
    • 2005
  • The mineralogical, physicochemical and thermal properties of the Myogi bentonite occurring in Japan were measured. A adsorption properties of U, Th, Ce and Eu ions on the Myogi bentonite were also investigated in different solution concentrations and pH conditions. The Myogi bentonite showed a strong alkaline character (pH 10.4), very high swelling, viscosity property and CEC, and a slow flocculation behavior due to the strong hydrophilic property. By the thermal analysis, the dehydroxylation of crystal water in bulk and clay fractions of the Myogi bentonite occur at $591^{\circ}C$ and $658^{\circ}C$, respectively, The adsorption experiments of ions such as U, Th, Ce and Eu were conducted for 0.2 g bentonites with 20mL solutions of various concentrations and different pH conditions with pH 3, 5, 7, 9, and 11. As a result, the Myogi bentonite showed excellent adsorption capacities for Ce, Th and Eu ions, whereas U ion showed very low adsorption capacity. Generally, Ce, Th and Eu ions showed the similar adsorption properties for the different concentrated solutions and pH conditions. These adsorption properties seem to be affected by the formation of various forms of chemical species and precipitation as well as ionic exchange reaction and surface adsorptions on smectite. Some associated zeolite minerals perhaps have some effects on the adsorption of U, Th, Ce and Eu on Myogi bentonite.

A Few Remarks on the Alkali-aggregate Reaction of Recycled-glass Concrete

  • Inada, Yoshinori;Kinoshita, Naoki;Matsushita, Seigo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.549-554
    • /
    • 2001
  • The authors have proposed that waste glass, which is crushed to pieces, can be used as a concrete aggregate. At the present time, recycled-glass concrete is used for sidewalk concrete blocks and pavement as glass is ornamental. However, in cases where recycled-glass concrete is used for structural concrete, strength and durability are required as structural concrete is exposed to the weather. Glass that is used generally is a mixture of SiO$_2$, Na$_2$O and CaO. SiO$_2$is the most likely cause of alkali-aggregate reaction when waste glass was used for concrete aggregate. In this study, an alkali-aggregate reaction test that is one of the important tests related to durability of aggregate was carried out far discussion of utilization of waste glass for concrete aggregate. From the results of the tests, it is found that glass is a reactive aggregate. The pessimum proportion of glass is about 75%. Then the cases of using fly ash, blast furnace slag and artificial zeolite for admixture materials were also examined for the purpose of prevention of alkali-aggregate reaction. from the results of the test, it was found that using them is an effective way to prevent alkali-aggregate reaction. The compressive strength in the cases of using admixture materials is larger than that without admixture materials.

  • PDF

Adsorption characteristics of As(III) and Cr(VI) from aqueous solution by Sediment Amendment Composite (저질개선제에 의한 수용액상의 As(III)와 Cr(VI) 흡착 특성)

  • Shin, Woo-Seok;Na, Kyu-Ri;Kim, Young-Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.216-221
    • /
    • 2016
  • The adsorption characteristics of mixed heavy metals (Cr(III), As(VI)) in aqueous solution were investigated using a sediment amendment composite. Sediment amendment composite was composed of clean sediment (40%), zeolite (20%), recycled aggregate (10%), steel slag (10%), oyster shell (10%), and cement (10%). The experimental results showed that the adsorption equilibrium was attained after 180 mins. Heavy metal adsorption was characterized using Freundlich and Langmuir equations. The equilibrium adsorption data for the sediment amendment composite better fitted with the Langmuir model than the Freundlich model. The maximum adsorption capacity of Cr(VI) (36.07 mg/g) was higher than As(III) (25.54 mg/g); and the adsorption efficiency of the Cr(VI) and As(III) ions solution decreased with decreasing pH from 2 to 10. The collective results suggested that the sediment amendment composite is a promising material for a reactive cap that controls the release of Cr(VI) and As(III) from contaminated sediments.

Variation of Copper and Zinc-Ion Adsorption Capacity via Zeolitification of Jeju Scoria (제주 스코리아의 제올라이트화에 따른 구리와 아연 이온의 흡착 용량 변화)

  • Chang-Han Lee;Sang-Kyu, Kam;Chul-Goo Hu
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.563-572
    • /
    • 2023
  • Scoria from Jeju-island (Jeju scoria) was converted into zeolitic material (Z-SA) via zeolitification using the fusion/hydrothermal method. Jeju scoria could be synthesized into Z-SA to from a surface covered with Na-A zeolite crystals, which was confirmed through an analysis of X-ray diffraction peak patterns and scanning electron microscopy images. Jeju scoria and Z-SA were employed as adsorbents to evaluate the adsorption rate and adsorption capacities for Cu2+ and Zn2+ ions. The adsorption rates and isothermal adsorption capacities could be well fitted by the pseudo-quadratic adsorption kinetics and Langmuir adsorption isotherm, respectively. The maximum adsorption capacities (qm) of Z-SA for Cu2+ and Zn2+ ions were found to be 163.36 mg/g and 120.51 mg/g, respectively, using the Langmuir adsorption isotherm. When Z-SA is synthesized from Jeju scoria via zeolitification using the fusion/hydrothermal method, Z-SA exhibits an adsorption capacity that is more than approximately 100 times the value exhibited by Jeju scoria. As a result, the synthesized Z-SA was regarded as an effective, economic adsorbent.

Influencing Factors on the Crystallizations of ZSM-5 in the Absence of Organic Template (유기 템플레이트 배제하의 ZSM-5 결정화에 따른 영향인자)

  • Kim, Wha-Jung;Lim, Chang-Whan;Lee, Seung-Ae;Lee, Myung-Chul;Jeong, Chan-Yee
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.776-784
    • /
    • 1993
  • A pentasil zeolite, ZSM-5 was synthesized in the absence of organic template, $TPA^+$ ion at $210^{\circ}C$. It was realized that a conventional method can not be applied to the synthesis system where organic templates are not used. The results indicated that the compositional range for the crystallization of ZSM-5 is very narrow, requiring very careful controls in the $Na_2O/SiO_2$and $SiO_2/Al_2O_3$ratios. In addition, the results showed that the effects of mixing method, aging and reaction time on the crystallization of ZSM-5 were extraordinarily significant.

  • PDF

Zeolites in the Volcaniclastics of Jeju Island (제주도 화산쇄설암의 불석광물)

  • Jeong, Gi-Young;Sohn, Young-Kwan;Jeon, Yong-Mun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • Zeolites were formed by the alteration of volcanic glass in the volcaniclastics including tuff cone/rings and subsurface Seoguipo Formation, Jeju Island. Phillipsite and analcime were identified by X-ray diffraction and electron microprobe analysis. Si/(Si+Al) atom ratios of analcime and phillipsite were similar to that of parent basaltic glass. In comparison with the simple chemistry of analcime, phillipsite showed a range of cavity cation compositions. Na is the major cavity cations of phillipsite in the Dangsanbong and Yongmeori tuffs bearing analcime, while K and Ca in core samples of Seoguipo Formation. Microtextural analysis by scanning electron microscope showed a general sequence that early phillipsite encrustification of pores was followed by later analcime infilling. Zeolites are abundant in the older tuff cone/rings but nearly absent in the younger ones.

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea (장기분지 데사이트질 응회암의 불석화작용)

  • Kim, Jinju;Jeong, Jong Ok;Shinn, Young-Jae;Sohn, Young Kwan
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Excited State Intramolecular Proton Transfer and Physical Properties of 7-Hydroxyquinoline

  • Kang Wee-Kyeong;Cho Sung-June;Lee Minyung;Kim Dong-Ho;Ryoo Ryong;Jung Kyung-Hoon;Jang Du-Jeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.140-145
    • /
    • 1992
  • The excited state intramolecular proton transfer and physical properties of 7-hydroxyquinoline are studied in various solutions and heterogeneous systems by measuring steady state and time-resolved fluorescence, reflection and NMR spectra. Proton transfer is observed only in protic solvents owing to its requirement of hydrogen-bonded solvent bridge for proton relay transfer. The activation energies of the proton transfer are 2.3 and 5.4 kJ/mol in $CH_3OH$ and in $CH_3OD$, respectively. Dimers of normal molecules are stable in microcrystalline powder form and undergo an extremely fast concerted double proton transfer upon absorption of a photon, consequently forming dimers of tautomer molecules. In the supercage of zeolite NaY, its tautomeric form is stable in the ground state and does not show any proton transfer.

Development of several methods to remove Cadmium from soil contaminated with Cadmium (Cadmium 오염토양(汚染土壤)에서 Cadmium 제거방법(除去方法)의 개발(開發))

  • Choi, Jyung;Lee, Jyung-Jae;Hur, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.128-132
    • /
    • 1991
  • This study was carried out to find a method to remove cadmium from soil and/or attenuate in Cd saturated Soil The chemical form of Cd was influenced by the physico-chemical properties of soil and the adsorption of Cd by soil conformed to the Langmuir isotherm. The order of Cd contents in chemical fractions extracted by several reagents was EDTA > NaOH > $HNO_3$. Flooding, liming and the addition of chelating agents and clay minerals to the contaminated soil seems to desirable in alleviating the harmful effects of Cd on plant growth by reducing Cd content in the $KNO_3$ fraction.

  • PDF