• Title/Summary/Keyword: Zeolite Mordenite Mineral

Search Result 10, Processing Time 0.021 seconds

Physicochemical Characteristics of Zeolite Mineral by Alkali Solution Treatment (알칼리 처리에 의한 Zeolite 광물의 물리화학적 특성)

  • Yim, Going
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • The effect of sodium hydroxide treatment on some physicochemical properties of zeolite mordenite mineral was studied with chemical analyses, powder X-ray diffraction, thermal analyses, infrared analysis, measurement of carbon dioxide adsorption and gas chromatography. Mordenite mineral from tuffaceous rocks in Yeongil and Wolsung area was used as a starting material and treated with 0.1-5N NaOH aqueous solution at about $95^{\circ}C$ in the water bath for three hours.At the concentration of sodium hydroxide below 0.5N, all chemical compositions in the tuff were virtually insoluble and the mordenite structure did not change. At the concentration above 1N, the chemical compositions such as silica, alumina, etc., were dissolved. The dissolution ratio of silica was lager than that of alumina, and the ratio of silica to alumina in the tuff decreased sharply in the concentration range of 2 to 3N. Intensity of X-ray diffraction peak of mordenite (202) plane and the adsorbed amount of carbon dioxide also decreased with the increasing concentration of sodium hydroxide above 1N. These decreases corresponded to the degree of mordenite structure collapsed.The separation of gas chromatography of nitrogen, oxygen and carbon monoxide was not affected by the sodium hydroxide treatment, but elution peaks of methane and krypton tended to be broadened and their retention time was shortened. The elution peaks of both methane and krypton tended to be overlapped with those of nitrogen and oxygen.

  • PDF

Removal of Heavy Metal Ions in Wastewater Using Zeolite Minerals (제올라이트광물을 이용한 폐수중의 중금속제거)

  • Yim Chai Suk;Yim Going
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • All the applications of natural zeolites make use of one or more of their physical and chemical properties: adsorption, ion-exchange and related molecular sieve properties, dehydration and rehydration, and siliceous composition. Accordingly, the applications of zeolite have been carried out in the various aspects because of its large cation exchange capacity and adsorption properties. In this paper, the adsorption effect of heavy metal ions in wastewater on zeolite mineral by batch adsorption process is studied. The amounts of adsorbed ions were variable by original pH and ionic concentration, especially original pH of solution had an important effect on the adsorption. In case of low pH solution, e.g. below 3.0, clinoptilolite adsorbed $Pb^{2+}$ ,$ Cd ^{2+ }$ , $Cu^{2+}$ and $Zn^{ 2+}$ , but mordenite almost did not adsorb except $Pb^{2+}$ . Under the same conditions, these ions were more adsorbed on clinoptilolite than on mordenite mineral. The velocity of adsorption was relatively fast and it was confirmed by shaking test that the equilibrium of adsorption could be attained in about one hour. The species of exchangeable cation of zeolite had an effect on its removing ability and zeolite of the sodium-exchanged type was the best.

Mineralogical Characteristics and Genetic Environment of Zeolitic Bentonite in Yeongil Area (영일 지역 제올라이트질 벤토나이트의 광물특성 및 생성환경)

  • 노진환;고상모
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • A zeolitic bentonite, which exhibits whitish appearance and contains considerable amounts (nearly 〉 5%) of zeolites, frequently occurs as thin beds less than 1 m in Yeongil area. The bentonites are mostly found in closely association with zeolite beds in the Nuldaeri Tuff and Coal-bearing formations of the Janggi Croup. A discordant occurrence of the bentonite against the bedding plane is also locally found. Montmorillonite, the major mineral constituent of the bentonite, is mostly associated with clinoptilolite as a zeolite. However, instead of clinoptilolite, mordenite is sometimes included in the case of more silicic bentonite, and heulandite in the less silicic one. It is characteristic that the mordenite is accompanied by lots of opal-CT in the silicic bentonite. SEM observations characteristically indicate that these authigenic phases, especially the montmorillonite and zeolite, nearly coexist as mixtures not forming a fine-scale zoning. The zeolitic bentonite seems to be formed in the comparatively silicic pore fluid at the alkaline condition accompanying pH fluctuation Compared to the zeolite-free normal bentonite, the zeolitic types exhibit somewhat higher REE abundance. These chemical characteristics, together with modes of occurrences and authigenic mineral associations, may suggest that the zeolitic bentonite is not merely diagenetic products and a possible hydrothermal alteration could not be excluded in the bentonite genesis.

$P^{32}$ Adsorption on Na-zeolite in Different Ionic Strengths (토양개량제(土壤改良劑)인 Zeolite에 의(依)한 인(燐)의 흡착(吸着))

  • Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.25 no.2
    • /
    • pp.99-104
    • /
    • 1982
  • Natural zeolite rock was pulverized and dispersed in water. Clay fraction was collected by sedimentation method. The dominant clay mineral was Clinoptiolite with some Mordenite and Smectite. $P^{32}$ adsorption on Na-zeolite was determined in different ionic strengths using $P^{32}$ isotope by sludge method. The lower the pH of suspension, the longer the contact time, and the more the amount of zeolite, the more inorganic P was adsorbed by Na-zeolite, whereas the more P adsorption per unit gram of zeolite was observed at a 100mg addition than a 200mg in same volume of P-NaCl solution (20ml), indicating that the whole positively charged surface of Na-zeolite was not occupied by inorganic P. Furthermore, the more P adsorption on Na-zeolite was observed in higher ionic strength than in the lower. The maximum P adsorption on Na-zeolite was about 1me/g, and the zero point charge (ZPC) is assumed to be below pH 3.7.

  • PDF

CO Adsorption on Cation Exchaged Zeolite A and Mordenite (陽이온 交煥된 제올라이트 A 및 Mordenite 上의 CO 氣體 吸着)

  • Kim Jong Taik;Kim Heung Won;Kim Myung Chul;Lee Jong Ryul
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.137-146
    • /
    • 1992
  • The adsorption properties of CO on the cation exchanged natural zeolite, $K_{111}$ and cation effects upon the CO adsorption were studied. $Na^+-,\;Cu^{2+}-\;and\;Ba^{2+}-\;K_{111}$ exhibited relatively good CO adsorption capacities and $Ba^{2+}- K_{111}$ treated by 0.4 N-$BaCl_2$ solution proved itself as the best adsorbent and superior to the synthetic zeolite 4A and 5A. The observed adsorption tendency due to the cations were in the order of $Ba^{2+}>Cu^{2+}>Na^+>K^+>Mg^{2+}>Ca^{2+}$. The cation exchanged number per unit cell as well as the kind of cation which forms bond with CO molecules in different intensities and other mineral factors such as pore size indicated to be important factors to the CO adsorption properties. The CNDO/2 calculations were performed to compare the adsorption tendencies and CO interaction energy of cations in $K_{111}$.

  • PDF

The Study on the CEC Increase and Granulation of Natural Zeolite -2. Effects of Temperature and Time on the Recrystallization of Natural Zeolite (천연(天然)Zeolite의 CEC 증가(增加)와 입단화(粒團化)에 관(關)한 연구(硏究) -2. 반응(反應) 온도(溫度)와 반응(反應) 시간(時間)의 영향(影響))

  • Choi, Jyung;Hur, Nam-Ho;Lee, Dung-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.151-154
    • /
    • 1993
  • The magnitute of CEC of the reaction product which was produced by the treatment of the natural zeolite power(CEC : 67me/100g) with 3N-NaOH at $80^{\circ}C$ for 30 hours was determined to be about 260me/100g, which was the highest value in all reaction products. By the NaOH-treatment the contents of major clay minerals in natural zeolite was shown to be decreased and it is apparent that new phillipsite was synthesized. Furthermore it is interesting that the phillipsite contents was increased with longer reaction time and higher temperature. After 30 hours treatment the dorminant clay mineral in the reaction product was found to be phillipsite.

  • PDF

Studies on Adsorption of Heavy Metals with Zeolite and Bentonite (제올라이트와 벤토나이트를 이용한 중금속 흡착 특성)

  • Kang, Han;Park, Sung-Min;Jang, Yun-Deuk;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.45-56
    • /
    • 2008
  • This study was carried out to determine the effects of mineral composition and grain size of zeolite and bentonite from Po-hang and Kyung-ju, South Korea on the adsorption of heavy metals. Zeolite specimen consists mainly of mordenite, clinoptilolite, heulandite etc. And bentonite specimen is mainly composed of montmorillonite. Five heavy metals, Cd, Cr, Cu, Mn, and Pb were used to conduct the relevant adsorption experiments with the fixed concentrations of 10 ppm and 20 ppm, respectively. Host specimens excluding specimen for Cr resulted in the adsorption rate over average 80 percent, and over 95 percent for Pb. This study indicates that zeolite is more efficient in the adsorption of the heavy metals than bentonite, and its adsorption rate tends to decrease with increasing concentration of the heavy metals.

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (II): Adsorption Properties of Heavy Metal Ions by Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (II): 국내산 제올라이트의 중금속 이온 흡착 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.201-213
    • /
    • 2003
  • The adsorption property and ability of domestic zeolites for some heavy metal ions (Ag, Pb, Cr, Cu, Zn, Mn), which may cause a serious environmental problem in industrial wastewater, were evaluated on ore unit through a series of adsorption experiments together with careful examinations of mineral composition and properties of the zeolites. Though the adsorption behavior basically took place in the form of a cation exchange reaction, the higher CEC value does not necessarily to imply the higher adsorption capacity for a specific heavy metal. A general trend of the adsorption selectivity for heavy metals in the zeolites is determined to be as follow: $Ag\geq$Pb>Cr,Cu$\geq$Zn>Mn, but the adsorption properties of heavy metal ions somewhat depend on the species and composition of zeolite. Clinoptilolite tends to adsorb selectively Cu in case of Cr and Cu, whereas heulandite prefers Cr to Cu. A dominant adsorption selectivity of the zeolite ores for Ag and Pb is generally conspicuous regardless of their zeolite species and composition. The zeolite ores exhibit a preferential adsorption especially for $Ag^{+}$ so as not to regenerate when treated with $Na^{+}$ . In the adsorption capacity for heavy meta ions, the zeolites differ in great depending on their species: ferrierite>clinoptilolite>heulandite. Considering the CEC value of mordenite, the mordenite-rich ore appears to be similar to the clinoptilolite ore in the adsorption capacity. The adsorption capacity for heavy metals is not positively proportional to the CEC values of the zeolites measured by the exchange reaction with ammonium ion. In addition, the adsorption capacity roughly tends to depend on the zeolite contents, i.e., the grade of zeolite ore, but the trend is not consistent at all in some ores. These may be caused by the adsorption selectivity for some specific heavy metals, the presence of possible stacking micro-faults and natural cations such as K hardly to exchange in the zeolite. Considering the economic availability and functional effectiveness as natural zeolite resources, clinoptilolite ores could be applicable to utilize the domestic zeolites for the removal of heavy metals.

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea (장기분지 데사이트질 응회암의 불석화작용)

  • Kim, Jinju;Jeong, Jong Ok;Shinn, Young-Jae;Sohn, Young Kwan
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

Comparative Analysis of the Characteristics of Natural Zeolites from Mongolia, Korea, and the United State (몽골, 한국, 미국 천연 제올라이트의 특성 비교 분석)

  • Battsetseg, Bayarsaikhan;Kim, Hu Sik;Kim, Young Hun;Kim, Jeong Jin;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.141-151
    • /
    • 2022
  • The 16 natural zeolites collected from Mongolia (6 types), the United States (1 type), and Korea (9 types) were characterized by XRD, XRF, TGA, DTA, and CEC analysis. All 16 samples are composite minerals. Two or more mineral phases co-exist and consist primarily of minerals such as clinoptilolite, heulandite, mordenite, and chabazite. In certain samples, minerals like illite and quartz were present as impurities. The XRF analysis showed that the 16 natural zeolites contain SiO2, Al2O3, K2O, CaO, Na2O, MgO, and Fe2O3 oxides. The cation exchange capacity of the U-1 sample was 223.3 meg/100 g, which is higher than the rest of the samples. M-6 sample in Mongolian natural zeolite and K-1 sample in Korean natural zeolite showed the highest cation exchange capacity at 166.6 meg/100 g. As a result of thermal differential and thermos gravimetric analysis, all 16 samples showed excellent thermal stability up to 600℃.