• Title/Summary/Keyword: Zeolite A membrane

Search Result 89, Processing Time 0.022 seconds

Study on Removal of DOC for Effluent from Nitrification and Denitrification Process with Zeolite by Combined Process of Coagulation and UF Membrane (제올라이트를 첨가한 질산화 탈질공정에서 응집과 UF공정을 이용한 처리수내 용존 유기물질 제거 연구)

  • Han, Jang Hyuk;Yoon, Tai Il;Cho, Kyung Chul;Song, Jea Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.537-546
    • /
    • 2005
  • This study was carried out to evaluate EPS and SMP variation of sludge and effluent in nitrification and denitrification process with zeolite addition, a possible reduction of effluent DOC by URC(Ultra Rapid Coagulation) process. As a biological wastewater treatment result, EPS formation of both aeration and anoxic sludges are not affect by SRT variation. However, EPS concentration of sludges is higher in aeration tank than in anoxic tank by 6~8 mg EPS/ g VSS. Linear relationship between SMP to DOC indicates that SMP of bulk solution contributes to most of the biological treatment effluent DOC. DOC and turbidity removal efficiency was more improved with URC process than in a conventional coagulation. For pretreatment of UF filtration DOC removal was advanced by URC process than only UF filtration.

Phosphorus removal by lime-natural mineral dissolved solutions

  • Joohyun, Kim;Sunho, Yoon;Jueun, Jung;Sungjun, Bae
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In previous studies, solely ferric (Fe3+) and calcium (Ca2+) ions were commonly used for removal of PO4-P (considered as T-P in this study) in wastewater via chemical precipitation. Herein, the removal of total phosphorus (T-P) in wastewater was performed using various mineral and lime dissolved solutions. The dissolution kinetics of different minerals (feldspar, olivine, elvan, illite, sericite, and zeolite) and lime was compared and used their solutions for T-P removal of real wastewater. The highest T-P removal (almost 90%) was obtained by the lime dissolved solution and followed by zeolite, illite, feldspar, and others. We observed a significant co-relationship (R of 0.96) between the amount of initial Ca2+ and T-P removal. This was induced by formation of hydroxyapatite-like mineral via Ca-P precipitation reaction at high pH solution. Furthermore, additional removal of suspended solid (SS) and chemical oxygen demand (COD) was achieved by only lime dissolved solution. Finally, the lime-feldspar dissolved solutions were prepared at different ratios (10-50%), which showed a successive T-P removal up to two times by samples of 40 and 50%.

WASTEWATER TREATMENT USING COMBINATION OF MBR EQUIPPED WITH NON-WOVEN FABRIC FILTER AND OYSTER-ZEOLITE COLUMN

  • Jung, Yoo-Jin;Koh, Hyun-Woong;Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.247-256
    • /
    • 2005
  • A combination of the submerged membrane activated-sludge bioreactor(SMABR) equipped with non-woven fabric filter and oyster-zeolite (OZ) packed-bed adsorption column was studied to evaluate the advanced tertiary treatment of nitrogen and phosphorous. The non-woven filter module was submerged in the MBR and aeration was operated intermittently for an optimal wastewater treatment performance. Artificial wastewater with $COD_{Cr}$ of 220 mg/L, total nitrogen (T-N) of 45 mg/L, and total phosphorous (T-P) of 6 mg/L was used in this study. MLSS was maintained about $4,000\;{\sim}\;5,000\;mg/L$ throughout the experiments. The experiments were performed for 100-day with periodic non-woven filter washing. The results showed that $COD_{Cr}$ could be effectively removed in SMABR alone with over 94% removal efficiency. However, T-N and T-P removal efficiency was slightly lower than expected with SMABR alone. The permeate from SMABR was then passed through the OZ column for tertiary nutrients removal. The final effluent analysis confirmed that nutrients could be additionally removed resulting in over 87% and 46% removal efficiencies for T-N and T-P, respectively. The results of this study suggest that the waste oyster-shell can be effectively reclaimed as an adsorbent in advanced tertiary wastewater treatment processes in combination with SMABR equipped with non-woven fabric filter.

Ethylbenzene Separation from Ethylbenzene/p-xylene Mixture with MFI-type Zeolite Membranes (MFI형 제올라이트 분리막을 이용한 에틸벤젠/파라자일렌 분리에 대한 연구)

  • Lee, Gi-Cheon;Jeon, Yukwon;Chu, Young Hwan;Choi, Seonghwan;Seo, Young-Jong;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.476-481
    • /
    • 2013
  • Ethylbenzene (EB) which has a similar physical properties with p-xylene (pX) was separated from EB/pX mixture by using MFI-type zeolite (TS-1, ZSM-5, and Silicalite-1) coated membranes. The zeolites were synthesized by microwave method to reduce the synthesis time and uniformly formed zeolite particles were coated on the ${\alpha}$-almina tubular support with a thickness of $3-4{\mu}m$. Separation factor and permeation flux of the synthesized zeolite coated membranes were measured to survey the best performance of ethylbenzene separation from different composition of EB/pX mixtures. When the EB/pX mixture of 5:5 molar ratio applied for the separation experiment, it represented the highest separation factor. We also have studied about the effect of the atomic composition of zeolites on the separation performance within the temperature range from 160 to $220^{\circ}C$. TS-1 showed the highest permeation flux of $1,666mol/m^{2*}s^*Pa$ and Silicate-1 showed the highest separation factor of 1.73 at $200^{\circ}C$ respectively.

A Study on Membrane Fouling by COD fraction of Influent in Submerged MBR (침지식 MBR을 이용한 유입수의 COD fraction에 따른 막오염 특성 연구)

  • Li, Sang-Jeong;Joo, Jae-Young;Bae, Yoon-Sun;Jung, In-Ho;Lee, Hae-Goon;Jeong, Chang-Hwa;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.681-689
    • /
    • 2011
  • Submerged membrane bio-reactor (SMBR) has several advantages such as high MLSS, long SRT, and low F/M ratio at wastewater treatment. So, this has widely applied over the world and many studies have been conducted. However, membrane fouling remains an inevitable problem. This study was investigated using bench-scale SMBR with three poeration modes. Raw waters were prepared by addition of starch, acetic and fibric acid to recovery water of zeolite. The efficiency of nitrification and COD were very stable as about 95% and 80%, respectively. And critical flux was 128.8L/$m^{2}$/hr. The result of biodegradability test was following values at the each mode : Ss+Xs/$C_{T}$=81.7%, 35.1% and 45.3%, $X_{I}+S_{I}/C_{T}=18.3%$, 64.9% and 54.7%. When particulate matters such as $X_{I}$ and $X_{S}$ in influent are increased, membrane fouling will take place more and more. A relative ratio of filtration resistance to the fouling occurred by the cake layer was increased when increased the portion of $X_{I}$ and polysaccharide. It was thought that the formation of cake layer was promoted due to bond between $X_{I}$ and vicid material s generated from the polysaccharide.

A Study on the Refinement of the Electronic Grade 2-Propanone (전자 등급 2-프로파논의 정제에 관한 연구)

  • Lee, Sang-Won;Kim, Sung-Il;Park, So-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2008
  • This research is related to the process of refining the raw material, industrial 2-propanone to the 2-propanone of the electronic grade. With this view, the high purity of 2-propanone was obtained through the complex preprocessing(physical adsorption method), distillation process and membrane-filtration of distillate. Impurities were identified by GC and UV, and then we assayed the water content in 2-propanone passing adsorption step made of activated carbon and Zeolite 4A. Furthermore, the distillation was performed with the packed column distillation apparatus to eliminate impurities such as acetaldehyde. Particulates were removed by reduced-pressure filtration through $0.5{\mu}m$ membrane filter and the number of the particulates was measured by particulate counter to confirm the removal of impure particles.

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

A Study on the Effect of Bioceramics as Biochemosorption Material in Sequencing Batch Reactor (연속회분식 반응조에서 생화학흡착제로서 바이오세라믹의 영향에 관한 연구)

  • Lee, Seunghwan;Islam, M.S.;Kang, Meea
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • Sequencing Batch Reactor (SBR) is well adopted for community wastewater treatment for its simplicity, performance and various advantageous treatment options. SBR is now drawing attention for its process modification such as coupled with membrane bioreactor, reverse osmosis or applying different media to achieve high removal efficiency. This study focused on the improved efficiency of carbon, nitrogen and phosphorous removal by applying zeolite materials called bioceramics to the SBR. Two laboratory-scale SBR units were operated in the same operating conditions - one with bioceramics called Bioceramic SBR (BCSBR) and the other without bioceramics used as control. Routine monitoring of COD, TP, $NH_3-N$, $NO_3-N$ was performed throughout this study. COD removal was about 80% to 100% and phosphorous removal was about 60% in the process whereas $NH_3-N$ removal efficiency was found to be 99.9% in the BCSBR unit. Addition of bioceramics also improved sludge characteristics such as sludge dewaterability, specific gravity and particle size. BCSBR can withstand high ammonia shock loading leading to the better treatment capacity of high ammonia containing wastewater. The cause of improved removal efficiencies within the biological reactor could be attributed to the biochemosorption mechanisms of bioceramics. Absorption/adsorption or desorption capacity of bioceramics was tested through laboratory experiments.

Optimization of Culture Conditions and Encapsulation of Lactobacillus fermentum YL-3 for Probiotics (가금류 생균제 개발을 위한 Lactobacillus fermentum YL-3의 배양조건 최적화 및 캡슐화)

  • Kim, Kyong;Jang, Keum-Il;Kim, Chung-Ho;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.255-262
    • /
    • 2002
  • This experiment was performed to improve the stability of Lactobacillus fermentum YL-3 as a poultry probiotics. The culture conditions that improve acid tolerance of L. fermentum YL-3 were investigated by changing several factors such as medium composition, temperature, anaerobic incubation and culture time. Also, L. fermentum YL-3 was encapsulated with alginate, calcium chloride and chitosan. The stable culture conditions of L. fermentum YL-3 were obtained in anaerobic incubation using MRS media without tween 80 for 20 hour at $42^{\circ}C$. The capsule after treatment with 1% chitosan was formed close membrane by a bridge bond. Immobilization of L. fermentum YL-3 in capsule was observed by confocal laser scanning microscopy, and cell viability was $2.0{\times}10^9\;CFU/g$ above the average. L. fermentum YL-3 capsule after acid treated at pH 2.0 for 3 hour survived about 40%, but those encapsulated with 1% chitosan survived about 65%. Survival rate of capsule stored at room temperature decreased about $2{\sim}3$ log cycle during 3 weeks, but viability of capsule stored at $4^{\circ}C$ during 3 weeks maintained almost $10^8\;CFU/g$ levels.