적조구제효율이 높고 환경 친화적으로 적조를 방제시킬 수 있는 물질을 개발하기 위해 점토광물, 철 광물 및 제올라이트 등 단일광물에 대해 구제효율을 측정하였고, 그 결과를 황토와 비교하였다. 실험 조건은 해수와 각 광물의 분말을 10g/${\ell}$의 비율로 혼합 살포하였으며, 코클로디니움의 개체수가 $m{\ell}$ 당 3,000∼5,000 셀을 유지하는 조건하에서 10분, 30분, 60분이 경과한 후, 활동성 있는 적조생물의 개체수를 계수하였다. 측정결과, 일라이트, 캐올리나이트, 몬모릴로나이트 등의 점토광물과 적니, 합성제올라이트는 코클로디니움에 대한 구제효율이 84-92%범위로써 ‘황토’와 유사하였다. 비정질체와 적철석은 투입 30분 경과 후 구제효율은 99%에 달함으로써 가장 높은 구제효율을 나타내었다. 또한 적조구제효율은 대상물질의 화학조성과 pH에 무관하였으며 입도가 3∼50${\mu}m$ 범위일 때는 ‘황토’와 유사하지만 나노크기일 때는 탁월하였다. 위의 실험결과로부터 적조구제제로서 광물질을 사용할 때, 적조구제의 주요 매카니즘은 접촉 및 응집작용으로 판단되며 따라서 구제효율은 적용되는 물질의 비표면적에 정비례한다는 것을 지시한다.
과망간산염들, 즉 과망간산 칼륨, 과망간산 암모늄, 과망간산 바륨에서 망간의 중성자 포획으로 야기되는 화학적 효과를 고찰하였다. $^{55}$Mn(n, r) $^{56}$ Mn 반응에서 생성된 방사성 망간 화학종, 즉 양이온 56/Mn, $^{56}$ MnO$_2$ 그리고 $^{56}$ MnO$_4$$^{-}$의 분포에 미치는 용제의 pH효과를 여러 가지 흡착제들과 이온교환체, 즉 제올이프 A-3, 카올리나이트, 알루미나, 이산화망간 그리고 도엑스 -50을 이용하여 고찰하였다. 카올리나이트와 알루미나에서 방사성 MnO$_4$$^{-}$의 분포가 대표적인 pH값인 4, 7 그리고 9 각각에서 다른흡착제와 이온교환체보다 높게 나타나며 동일한 흡착제일경우에는 pH 4 는 및 pH 9에서가 pH 7에서보다 높게 나타난다. $^{55}$Mn(n, r) $^{56}$ Mn 반응에 의하여 과망간산염에서 생성된 반조망간원자들의 열-어니어링 거동 또한 고찰하였다. 열-어니어링에서 $^{56}$ MnO$_4$$^{-}$의 잔류율은 10$0^{\circ}C$ 및 13$0^{\circ}C$ 처리에서 온도가 높아질수록 증가함을 보였다. 망간염의 반조효과는 hot zone model로 설명하였다.
본 연구에서는 2021년 WP21 탐사를 통해 수집한 마리아나 해구 주변 해양퇴적물(WP21GPC04)에 대한 깊이 별 원소 분포 및 광물 구성에 대한 분석을 수행하였다. 마이크로 X선 형광법(μ-XRF)을 통해 분석된 WP21GPC04 해양 퇴적물의 평균 화학조성은 깊이에 따른 특징적인 변화 없이 평균 SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%를 보이며, 이를 Mariana pelagic clay와 평균 해양 퇴적물의 원소 분포인 GLOSS (global subducting sediment)의 성분과 비교하였다. 방사광 X선 회절법(Synchrotron-XRD)을 이용하여 분석된 광물 구성은 깊이에 따라 다소 차이가 있음을 확인하였다. 석영, 운모, 사장석은 모든 깊이에서 확인된 반면 녹니석은 상대적으로 얕은 깊이에서만 확인되었고, 제올라이트 계열인 필립사이트와 휼란다이트는 퇴적 깊이에 따라 점진적인 함량의 변화를 보였다. 이는 해양 퇴적물의 퇴적 시기에 따른 환경에 변화가 있었거나 유사한 상 안정성에 의한 공생관계로 해석될 수 있다. 본 연구 결과는 서태평양 마리아나 해구 주변의 퇴적 환경 변화와 섭입하는 해양 퇴적물의 상 분포 및 거동에 따른 섭입대 특성 연구에 대한 기초 자료를 제공할 것이다.
$Ca^{2+}$ 이온과 $Tl^+$ 이온으로 치환되고 완전히 진공 탈수된 제올라이트 X결정 $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$ ($Ca_{18}Tl_{56}$-X;${\alpha}=24.883(4){\AA}$)와 $Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$ ($Ca_{32}Tl_{28}$-X;${\alpha}=24.973(4){\AA}A$)의 구조를 21(1)TEX>$^{\circ}C$에서 입방공간군 Fd3을 사용하여 단결정 X-선 회절법으로 해석하고 그 구조를 정밀화 하였다 $Ca_{18}Tl_{56}$-X 결정은 0.045 M $Ca(NO_3)_2$와 0.005 M $TINO_3$ 혼합용액으로 흐름법을 이용하여 이온 교환하였다. $Ca_{32}Tl_{28}$-X는 이와 유사하게 0.0495 M $Ca(NO_3)_2$ 와 0.0005 M $TINO_3$ 혼합용액을 사용하였다. 각 결정은 360$^{\circ}C$, $2{\times}10^{-6}$ Torr에서 탈수시켰다. $Ca_{18}Tl_{56}$-X 및 $Ca_{32}Tl_{28}$-X 결정 구조는 각각 I > 3${\sigma}$ (I)인 382 및 472개의 회절 반사점을 사용하여 각각 $R_1=0.039,\;R_2=0.036$ 및 $R_1=0.046,\;R_2=0.045$의 최종 오차 지수 값을 얻었다. 탈수된 $Ca_{18}Tl_{56}$-X 및 $Ca_{32}Tl_{28}$-X 결정 구조에서, $Ca^{2+}$ 이온과 $Tl^+$ 이온은 서로 틀리는 6개의 결정학적 자리에 위치한다. 16개의 $Ca^{2+}$ 이온은 D6R의 중심인 팔면체 자리 I을 채운다 ($Ca_{18}Tl_{56}$-X : Ca-O=2.42(1) ${\AA}$ 및 O-Ca-O=93.06(4)$^{\circ}$; $Ca_{32}Tl_{28}$-X Ca-O=2.40(1) ${\AA}$ 및 O-Ca-O=93.08(3)$^{\circ}$). $Ca_{18}Tl_{56}$-X 구조에서는 2개의 $Ca^{2+}$ 이온은 자리 II (Ca-O=2.35(2) ${\AA}$ 및 O-Ca-O=111.69(2)$^{\circ}$)를 점유하고 26개의 $Tl^+$ 이온은 큰 동공 내 마주보는 S6R의 자리 II에 점유한다. 각기 3개의 산소로 만들어지는 평면으로부터 1.493 ${\AA}$ 떨어져 있다(Tl-O=2.70(8)${\AA}$ 및 O-Tl-O=92.33(4)$^{\circ}$). 약 4개의 $Tl^+$ 이온은 세 개의 산소로 만들어지는 평면으로부터 소다라이트 동공쪽으로 1.695${\AA}$ 떨어진 자리 II에 위치해 있다(Tl-O=2.81 (1) ${\AA}$ 및 O-Tl-O=87.48(3)$^{\circ}$). 나머지 26개의 $Tl^+$ 이온들은 자리 III'에 분포된다(Tl-O=2.82 (1) ${\AA}$ 및 Tl-O=2.88(3) ${\AA}$). Ca_{32}Tl_{28}$-X 결정 구조에서는 16개의 $Ca^{2+}$ 이온과 15개의 $Tl^+$ 이온들이 자리 II를 점유하고 있다(Ca-O=2.26(1) ${\AA}$ 및 O-Ca-O=119.14(4)$^{\circ}$; Tl-O=2.70(1) ${\AA}$ 및 O-Tl-O=92.38$^{\circ}$). 한 개의 $Tl^+$ 이온들은 자리 II'를 점유한다. 나머지 12개의 $Tl^+$ 이온들은 자리IlI'에 분포된다.
피페리딘 구조가 포함된 구조유도분자가 미치는 알루미노포스페이트 제올라이트 합성과 결정구조에 대한 영향을 조사하였다. 피페리딘 구조가 포함된 구조 유도분자는 피페리딘을 포함하여 2-메틸피페리딘, 2,6-디메틸피페리딘, 2,2,6,6-테트라메틸피페리딘을 사용하였다. 제올라이트 합성은 $1.0Al_2O_3:1.0P_2O_5:0.76SDA:45H_2O$의 조성으로 $170^{\circ}C$에서 7일동안 수열합성을 하였다. 피페리딘을 구조유도분자로 사용한 경우, 층상 구조가 형성되었으며 구조유도분자의 크기가 커질수록 AFI 구조의 AlPO-5가 형성되고 가장 큰 구조 유도분자를 이용한 경우, SAS 구조의 알루미노포스페이트가 형성됨을 리트벨트법으로 확인할 수 있었다. 또한 고체핵자기공명분석법의 결과로부터 미세 다공성 물질인 SAS 골격구조 내에 알루미늄과 인이 위치함을 알 수 있었다.
수용액으로부터 유독한 말라카이트 그린 성분을 제거하는데 있어서 입상 활성탄의 활용가능성을 회분식 실험을 통해 살펴보았다. 흡착변수로서 흡착온도, 접촉시간과 초기농도의 영향을 조사하였다. 흡착평형자료로부터 Langmuir와 Freundlich 흡착등온식에 대한 적합성을 평가하였다. 298, 308 및 318 K에서 흡착평형은 Langmuir 흡착등온식이 더 잘 맞았으며, 계산된 분리계수 값으로부터 입상 활성탄에 의한 말라카이트 그린의 효과적인 처리가 가능하다는 것을 알 수 있었다. 동력학적 실험으로부터, 흡착공정은 유사이차반응속도식에 잘 맞으며, 속도상수($k_2$) 값은 말라카이트그린의 초기농도와 온도가 증가할수록 감소하였다. 활성화에너지, 엔탈피, 엔트로피 및 자유에너지변화와 같은 열역학파라미터들은 흡착공정의 특성을 평가하기 위하여 조사하였다. 활성화에너지의 계산값은 입상 활성탄에 대한 말라카이트 그린의 흡착이 물리적 공정임을 나타냈다. 자유에너지변화값($\Delta$G = -3.68~-7.76 kJ/mol)과 엔탈피변화값($\Delta$H = +26.34 kJ/mol)은 흡착공정이 298~318 K범위에서 자발적이고 흡열과정으로 일어난다는 것을 나타냈다.
선형계곡을 따라 발달하는 동래 단층대의 단층비지를 조사 연구하였다. 이 단층대는 내적으로 대상구조를 가지며 다중 단층핵의 형태로 산출된다. 단층핵은 비지대와 파쇄대로 구분되며 단층대의 최외곽부인 손상대에 의해 둘러싸인다. 변형작용과 변질작용의 강도는 모암으로부터 손상대 $\rightarrow}$ 파쇄대$\rightarrow}$ 비지대를 향해 증가한다. 비지대를 형성한 변형작용은 초기엔 취성변형작용의 파쇄작용(catalasis)이 주도적이었고, 단층슬립의 최대의 국지화 지역인 파쇄물질의 고변형지역(비지대)에서는 연속적인 취성단열작용의 파쇄유동으로 나아갔을 것으로 생각된다. 단층비지대의 분쇄물질의 높은 공극 및 투수성은 지하로부터 열수유체의 유입을 가능케하여 활발한 열수 변질작용이 일어남에 따라 변형작용 기구는 취성파괴로부터 유체도움 유동으로 일대변화를 겪게 되었다. 열수 유체에 의한 일라이트, 스멕타이트 등의 점토광물 생성과 철광물 및 기타원소의 침전은 단층비지대에 높은 유압을 발생시켜 단열작용과 변질작용을 반복적으로 발생시킬수 있다. 일라이트의 다형은 대부분 1Md형으로 구성된다. 암석이 분쇄되고 나서 변질작용으로 점토광물이 생성될 때까지의 시간은 매우 짧은 것으로 알려져 있다. K-Ar 연령 측정자료에 의할때 열수변질을 수반한 동래단층의 주요 단층활동 시기는 51.4~57.5Ma와 40.3~43.6Ma의 두 시기로 구분될 수 있으나 시.공간적 단층활동 형태를 구명하기 위해서는 더 많은 자료가 필요하다. 그리고 비지대 점토광물의 생성온도환경으로 판단할 때 고기운동의 열수변질이 신기운동에 비해 보다 고온에서 일어난 것으로 추정된다.
전기로 더스트를 점토 또는 백토와 혼합하여 소성온도에 따른 전기로 더스트 내에 존재하는 Cr, Cd, Cu, Pb, Fe, Zn 중금속들의 거동을 조사하였다. 전기로 더스트를 점토와 백토에 각각 0∼50 wt%씩 첨가하였고, 소성은 $200^{\circ}C$ 간격으로 $200∼1200^{\circ}C$ 범위 내에서 수행하였다. 소성된 시편은 TCLP법에 의한 용출실험을 거친 후 ICP-AES로 분석하였다. 중금속표준용액을 이용한 양이온 교환능 실험결과 점토와 백토가 기존의 중금속 흡착제인 제올라이트와 비슷한 중금속 양이온 교환능을 보였으며, Cr에 대해서는 더 우수한 교환능이 관찰되었다. TCLP법에 의한 용출실험 결과 Cr과 Fe는 모든 시편에서 거의 용출되지 않았으며, Cd과 Zn은 소성온도가 증가하고 전기로 더스트의 함량이 적을수록 용출량이 감소하였다. 점토 또는 백토와 전기로 더스트를 혼합 소성 시 일차적으로 양이온 교환능에 의해 중금속이 준안정화되고 이차적으로 공융반응에 의하여 중금속들이 완전하게 고정화되어 중금속 용출을 억제하는 것으로 추정된다. 본 연구에서 백토가 점토 보다는 전기로 더스트 중금속의 안정화에 더 효과적이었다.
본 논문은 다양한 시설내에 적은 농도의 $CO_2$ 제거를 위한 선택적 $CO_2$ 흡수능력을 향상시킨 흡착제의 효율평가에 관한 것이다. 직경 4mm의 구형 흡착제는 시판용 제올라이트에 첨가제, 물, 바인더, LiOH를 섞어 제조하였다. 칼럼테스트에서 400분 이내에 90% 이상의 $CO_2$흡착효율을 나타내었고, 흡착필터모듈 흡착능력을 평가하기 위해 회분식과 연속식타입의 챔버테스트가 시행되었다. 회분식테스트에서 30분 이내에 약 92%의 $CO_2$가 제거되는 것을 확인하였다. 연속식테스트에서 30분 이내 70%의 $CO_2$가 제거효율을 보였으며, 2,500ppm 이상의 $CO_2$가 제거되는 것을 확인하였다. 재현성테스트를 수차례 수행한 결과 15일동안 1,000ppm 이상의 $CO_2$가 연속적으로 제거됨을 보였다. TGA 분석법을 이용한 흡착량 분석에서 흡착제 g당 5.0mmol의 $CO_2$를 흡착하는 것으로 나타났다. 본 연구에서 개발된 흡착제는 상온에서 저농도 $CO_2$ 실내환경에 적용가능한 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.