• Title/Summary/Keyword: Zeolite A/X

Search Result 268, Processing Time 0.027 seconds

Crystal Structure of Xenon Encapsulate within Na-A Zeolite

  • Im, U Taek;Park, Man;Heo, Nam Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.75-80
    • /
    • 2000
  • The positions of Xe atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated Na-A have been determined. Na-A was exposed to 1050atm of xenon gas at 400 $^{\circ}C$ for seven days, followed by cooling at pressure to encapsulate Xe atoms. The resulting crystal structure of Na-A(7Xe) (a = 12.249(1) $\AA$, $R_1$ = 0.065, and $R_2$ = 0.066) were determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(1) $^{\circ}C$ and 1 atm. In the crystal structure of Na-A(7Xe), seven Xe atoms per unit cell are distributed over four crystallographically distinct positions: one Xe atom at Xe(1) lies at the center of the sodalite unit, two Xe atoms at Xe(4) are found opposite four-rings in the large cavity, and four Xe atoms, two at Xe(2) and others at Xe(3), respectively, occupy positions opposite and between eight- and six-rings in the large cavity. Relatively strong interactions of Xe atoms at Xe(2) and Xe(3) with $Na^+$ ions of four-, eight-, and six-rings are observed:Na(1)-Xe(2) = 3.09(6), Na(2)-Xe(3) = 3.11(2), and Na(3)-Xe(2) = 3.37(8) $\AA$. In each sodalite unit, one Xe atom is located at its center. In each large cavity, six Xe atoms are found, forming a distorted octahedral arrangement with four Xe atoms, at equatorial positions (each two at Xe(2) and Xe(3)) and the other two at axial positions (at Xe(4)). With various reasonable distances and angles, the existence of $(Xe)_6$ cluster is proposed (Xe(2)-Xe(3) = 4.78(6) and 4.94(7), Xe(2)-Xe(4) = 4.71(6) and 5.06(6), Xe(3)-Xe(4) = 4.11(3) and 5.32(4) $\AA$, Xe(2)-Xe(3)-Xe(2) = 93(1), Xe(3)-Xe(2)-Xe(3) = 87(1), Xe(2)-Xe(4)-Xe(2) = 91(4), Xe(2)-Xe(4)-Xe(3) = 55(2), 59(1), 61(1), and 68(1), and Xe(3)-Xe(4)-Xe(3) = 89($^{\circ}1$)). These arrangements of the encapsulated Xe atoms in the large cavity are stabilized by alternating dipoles induced on Xe(2), Xe(3), and Xe(4) by eight- and six-ring $Na^+$ ions as well as four-ring oxygens, respectively.

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

Synthesis and Characterization of Al-containing Titanium Silicalite-1 Catalysts (알루미늄 함유 티타늄 실리카라이트-1 촉매의 합성 및 특성 연구)

  • Ko, Yong Sig;Hong, Suk Bong;Kim, Geon Joong;Ahn, Wha Seung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.639-647
    • /
    • 1998
  • Al-containing titanium silicalite-1 ([Al]-TS-1) catalyst was prepared hydrothermally, and the effects of synthesis parameters such as silica/alumina sources, $SiO_2/TiO_2$ ratio, and aging treatment were investigated. The structure, crystal size, and shape were examined by XRD and SEM, and the extent of titanium incorporation into the zeolite framework was examined using UV-vis DRS spectroscopy. For [Al]-TS-1 catalyst preparation, aging of ca. 24h was essential, and the faster crystallization rates were achieved with Cab-O-Sil than with Ludox or TEOS as a silica source. In addition, the higher crystallinity and faster crystallization rate were obtained using sodium aluminate as an aluminum source. 2-butanol oxidation using $H_2O_2$ as an oxidant was carried out to confirm the redox property of the [Al]-TS-1. Acid sites catalyzed toluene alkylation study indicated that lattice titanium species in [Al]-TS-1 weakened the acid strength, and the para-ethyltoluene selectivity was enhanced as a results.

  • PDF

Crystal Structures of Dehydrated $Ag^+\;and\;Zn^{2+}$ Exchanged Zeolite A, $(Ag_{2.8}Zn_{4.6}-A)$ and of Its Ethylene Sorption Complex (은 이온과 아연 이온으로 치환한 제올라이트 A $(Ag_{2.8}Zn_{4.6}-A)$의 탈수한 결정구조와 이것에 에틸렌을 흡착시킨 결정구조)

  • Mi Suk Jeong;Jong Yul Park;Un Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.189-195
    • /
    • 1991
  • Two crystal structures of dehydrated $Ag_{2.8}ZN_{4.6}-A$ and of its ethylene sorption complex have been determined by single-crystal X-ray diffraction techniques. The structures were solved and refined in the cubic space group Pm3m at 23(1)$^{\circ}$C. Dehydration of two crystals studied were achieved at 400$^{\circ}$C and $2{\times}10^{-6}$ Torr for 2 days and one crystal was treated with 250 Torr of ethylene at 25(1)$^{\circ}$C. The structures of dehydrated $Ag_{2.8}ZN_{4.6}-A$ (a = 12.137(2) ${\AA}$ and of its ethylene sorption complex (a = 12.106(2)${\AA}$) were refined to final error indices, R(weighted) = 0.044 with 237 reflections and R(weighted) = 0.050 with 301 reflections, respectively, for which I > 3${sigma}$(I). 2.8 $Ag^+$ ions are recessed 0.922(2) ${\AA}$ from (111) plane of three 6-ring oxygens into the large cavity where each forms a lateral ${\pi}$ complex with an ethylene molecule. These $Ag^+$ ions are in 2.240(5)${\AA}$ from three framework oxide ions and 2.290(5) ${\AA}$ from each carbon atom of an ethylene molecule. The $Zn^{2+}$ ions occupy two different threefold axis positions of the unit cell. 2.8 $Zn^{2+}$ ions are recessed 0.408(2) ${\AA}$ from (111) plane of the 6-ring oxygens and each $Zn^{2+}$ ion forms a $\pi$ complex with an $C_2H_4$ molecule. The distances between $Zn^{2+}$ ions and carbon atom of ethylene molecule, Zn(2)-C = 2.78(4) ${\AA}$ are long. This indicates that this bond is relatively weak.

  • PDF

Changes in the Linear Compressibility and Bulk Modulus of Natural Stilbite Under Pressure with Varying Pressure-Transmitting Media (천연 스틸바이트의 압력전달매개체에 따른 선형압축률 및 체적탄성률 비교 연구)

  • Hwang, Huijeong;Lee, Hyunseung;Lee, Soojin;Jung, Jaewoo;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • This study is a preliminary step to understand the reaction between various liquids and zeolite in the subduction zone environment. Stilbite, NaCa4(Al9Si27)O72·28(H2O), was selected and high pressure study was conducted on compressional behavior by the pressure-transmitting medium (PTM). Water and NaHCO3 solution that can exist in the subduction zone was used as PTM, and samples were pressurized from ambient to a maximum of 2.5 GPa. Below 1.0 GPa, both experiments show a low linear compressibility in the range of 0.001 to 0.004 GPa-1 and a high bulk modulus of 220(1) GPa. This is presumably because the structure of the stilbite becomes very dense due to insertion of water molecules or cations into the channel. On the other hand, at 1.0 GPa or higher, the trends of the two experiments are different. In the water run, the linear compressibility of the c-axis is increased to 0.006(1) GPa-1. In the NaHCO3 run, the linear compressibility of the b- and c-axis is increased to 0.006(1) GPa-1. The bulk modulus after 1.0 GPa shows values of 40(1) and 52(7) GPa in water and NaHCO3 run, respectively, confirming that stilbite becomes more compressible than that before 1.0 GPa. It is caused by the migration of cations and water molecules inside the channel, as the water molecules in the PTM start to freeze and stop to insert toward the channel at 1.0 GPa or more. In the NaHCO3 run, it is assumed that the distribution of extra-framework species inside the structure is changed by substitution of the Na+ cation. It can be expected from tendency of the relative intensity ratio of the (001) and (020) peaks which show a different from that of the water run.

Studies on the Deactivation-resistant Ru Catalyst (Ru 촉매의 비활성화 억제를 위한 연구)

  • Kim, Young-Kil;Yie, Jae-Eui;Cho, Sung-June;Ryoo, Ryong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.808-818
    • /
    • 1994
  • Effects of ceria additive on the activity and thermal aging behavior of supported Ru catalysts were investigated using Ru/${\gamma}$-$Al_2O_3$and Ru/$CeO_2$-${\gamma}$-$Al_2O_3$. The catalysts were characterized by $^{129}Xe$-NMR and $H_2$ chemisorption. The cataltic activity for conversion of CO, HC and $NO_x$ was measured using simulated automobile engine exhausts under lean, rich and stoichiometric conditions. For both fresh and aged catalysts, Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was more active than Ru/${\gamma}$-$Al_2O_3$ for all three pollutants. Results of $^{129}Xe$-NMR and $H_2$ chemisorption indicated that sintering of Ru particles occurred to the same extent for both catalysts during the thermal aging process. After thermal aging at 673K, however, the catalytic activity of the aged Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was substantially higher than that of the fresh one, while the activity of Ru/${\gamma}$-$Al_2O_3$ decreased after the thermal aging. This finding may suggest new active sites were created during the thermal aging, probably in the vicinity of the interface between Ru and Ce. For more quantitative investigation of the effect of a cation such as Ce on the thermal aging of Ru metal particles, Ru catalysts supported on cation-exchanged Y-zeolites were used as the model catalysts. The results indicated that when Ba, Ca, La, Y or Ce was used for the cation exchange, the exchanged cation did not affect the thermal aging behavior of Ru in Y-zeolite, as evidenced by $^{129}Xe$-NMR and EXAFS.

  • PDF

Crystal Structures of $Cd_6-A$ Dehydrated at $750^{\circ}C$ and Dehydrated $Cd_6-A$ Reacted with Cs Vapor ($750^{\circ}C$ 에서 탈수한 $Cd_6-A$의 결정구조와 이 결정을 세슘 증기로 반응시킨 결정구조)

  • Se Bok Jang;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.191-198
    • /
    • 1993
  • The crystal structures of $Cd_{6-}A$ evacuated at $2{\times}10^{-6}$ torr and $750^{\circ}C$ (a = 12.204(1) $\AA$) and dehydrated $Cd_{6-}A$ reacted with 0.1 torr of Cs vapor at $250^{\circ}C$ for 12 hours (a = 12.279(1) $\AA$) have been determined by single crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C.$ Their structures were refined to final error indices, $R_1=$ 0.081 and $R_2=$ 0.091 with 151 reflections and $R_1=$ 0.095 and $R_2=$ 0.089 with 82 reflections, respectively, for which I > $3\sigma(I).$ In vacuum dehydrated $Cd_{6-}A$, six $Cd^{2+}$ ions occupy threefold-axis positions near 6-ring, recessed 0.460(3) $\AA$ into the sodalite cavity from the (111) plane at O(3) : Cd-O(3) = 2.18(2) $\AA$ and O(3)-Cd-O(3) = $115.7(4)^{\circ}.$ Upon treating it with 0.1 torr of Cs vapor at $250^{\circ}C$, all 6 $Cd^{2+}$ ions in dehydrated $Cd_{6-}A$ are reduced by Cs vapor and Cs species are found at 4 crystallographic sites : 3.0 $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry; ca. 9.0 Cs+ ions lie on the threefold axes of unit cell, ca. 7 in the large cavity and ca. 2 in the sodalite cavity; ca. 0.5 $Cs^+$ ion is found near a 4-ring. In this structure, ca. 12.5 Cs species are found per unit cell, more than the twelve $Cs^+$ ions needed to balance the anionic charge of zeolite framework, indicating that sorption of Cs0 has occurred. The occupancies observed are simply explained by two unit cell arrangements, $Cs_{12}-A$ and $Cs_{13}-A$. About 50% of unit cells may have two $Cs^+$ ions in sodalite unit near opposite 6-rings, six in the large cavity near 6-ring and one in the large cavity near a 4-ring. The remaining 50% of unit cells may have two Cs species in the sodalite unit which are closely associated with two out of 8 $Cs^+$ ions in the large cavity to form linear $(Cs_4)^{3+}$ clusters. These clusters lie on threefold axes and extend through the centers of sodalite units. In all unit cells, three $Cs^+$ ions fill equipoints of symmetry $D_{4h}$ at the centers of 8-rings.

  • PDF

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.