• 제목/요약/키워드: Zeolite 5A

검색결과 501건 처리시간 0.028초

Open System 수열반응을 통한 하수슬러지 소각 비산재의 Zeolite 합성가능성 (Synthesis of Zeolite from Sewage Sludge Incinerator Fly Ash by Hydrothermal Reaction in Open System)

  • 이제승;엄석원;최한영
    • 한국환경보건학회지
    • /
    • 제33권4호
    • /
    • pp.317-324
    • /
    • 2007
  • The sewage treatment sludge disposal has become a serious environmental problem because of restricted direct land-filling and oceandumping in spite of their large amounts discharged. So the recycling of sewage treatment sludge is very useful alternative for waste management. Here, we studied the feasibility of zeolite synthesis in open system from the sewage treatment sludge incinerator fly ash by means of hydrothermal synthesis. We considered the concentration of NaOH, reaction time, reaction temperature and reaction step as synthesis variables. The phase of zeolite products was identified by X-ray diffractometer(XRD) and ammonium ion exchange test was performed for the raw fly ash and two zeolite products(Z-3 and Z-5). In leaching test of the raw fly ash, hazard metal is detected very low level compared with regulatory leaching test standard. But in total recoverable test, the total contents of the fly ash were very high in terms of the standard for waste-derived fertilizer. Through hydrothermal reaction, small amount of zeolite P was synthesied in 1 N of NaOH solution and relatively large amount of hydroxysodalite was synthesied in 3 N and 5 N of NaOH solution with similar peak intensity. Addition of an aging step in the synthesis didn't increase the amount of zeolite phase. Maximum $NE_4^+-N$ exchange capacity is 1.49 mg $NH_4^+-N/g$ in Z-3 and 1.38 mg $NH_4^+-N/g$ in Z-5. Most of the ammonium ion is exchanged in 30 minutes and disorption did not occur until 5 hours.

산으로 개질한 Zeolite 5A의 세공구조에 따른 Toluene Vapor의 흡착특성 (Adsorption Characteristics of Toluene Vapor According to Pore Structures of Zeolite 5A Modified with Hydrochloric Acid)

  • 이송우;배상규;권준호;나영수;안창덕;윤영삼;송승구
    • 대한환경공학회지
    • /
    • 제27권8호
    • /
    • pp.807-812
    • /
    • 2005
  • 연속식 흡착장치를 사용하여 산처리로 세공구조를 변화시킨 Zeolite 5A의 toluene vapor 평형흡착량과 흡착제의 세공직경에 따른 표면적과의 상관관계를 고찰하였다. 산처리에 의해 미세세공이 형성되기도 하지만 기존 미세세공의 직경이 점차 확대되었으며, 산의 농도가 높을수록 미세세공이 중간세공 이상으로의 변화가 많았다. 산처리한 Zeolite 5A의 toluene vapor 평형흡착량은 $15{\sim}\;mg/g70$ 사이였고 산처리에 의해 평형흡착량이 약 5배까지 증가하였으며, toluene vapor는 주로 직경 $15\;{\AA}$ 이상의 세공 표면적에 비교적 잘 흡착되는 것으로 판단되었다. Toluene vapor 평형흡착량과 총 누적표면적(total cumulative surface area)은 상관관계가 없었으며, 직경 $15\;{\AA}$ 이상의 누적표면적과는 가장 높은 상관관계(0.997)를 나타내었다.

Polysulfone으로 제올라이트를 고정화한 새로운 PS-zeolite 비드에 의한 Sr 이온 및 Cs 이온의 흡착 특성 (Adsorption Characteristics of Sr ion and Cs ion by a Novel PS-zeolite Adsorbent Immobilized Zeolite with Polysulfone)

  • 이창한;박정민;감상규;이민규
    • 한국환경과학회지
    • /
    • 제24권5호
    • /
    • pp.671-678
    • /
    • 2015
  • The adsorption characteristics of Sr and Cs ions were investigated by using PS-zeolite beads prepared by immobilizing zeolite with polysulfone (PS). The adsorption kinetics of Sr and Cs ions by PS-zeolite beads was described well by the pseudo-second-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 65.0 mg/g and 76.4 mg/g, respectively. In the binary system of Sr ion and Cs ion, the adsorption capacities of each ion decreased with increasing mole ratio of mixed counterpart ion, and Cs ion showed the higher hinderance than Sr ion. We found that thermodynamic properties of Sr and Cs ions on absorption reaction were spontaneous and endothermic at 293 to 323 K.

화학처리에 의한 천연 Zeolite의 Gas 분리 (Gas Separations of Natural Zeolite by Chemical Treatments)

  • 임굉
    • 자연과학논문집
    • /
    • 제5권1호
    • /
    • pp.67-75
    • /
    • 1992
  • 결정성 aluminosilicate 광물의 일종인 천연 zeolite는 광물학적 특성과 화학적 표면활성으로 인하여 다방면의 공업화학적 이용가치가 매우 높고 광물중 특히 가장 높은 양이온교환능을 가지고 있어 기체분자에 대한 선택적 흡착력이 큰 molecular sieve로써 흡착분리제로는 물론, 건조제, 흡습제, 이온교환체, 촉매, 증량제 그리고 폐수처리제, 경수의 연화제등으로 이용도가 날로 증가하고 있다. 국내산 천연 zeolite를 IN HCL용액과 NaCl용액으로 화학처리하여 다공성을 증가시켜 column충전제로 사용한 결과, 혼합기체 Ar, $N_2$ CO및 $CH_4$의 분리특성에 관해서 HCL용액으로 처리한 mordenite 시료는 활성화온도가 $300^{\circ}C$일 경우, CO와 $CH_4$의 분리는 곤란하나 $350^{\circ}C$에서는 분리가 용이하였고 NaCl용액으로 처리한 시료는 미처리한 것과 거의 유사하였다. Ar과 $N_2$와의 분리에는 산 또는 알칼리로 화학처리한 시료에도 별로 효과가 없었으나 HCL용액과 NaCl용액을 연속적으로 처리한 천연 zeolite는 합성 zeolite의 특성에 견줄만한 정도로 기체분리효과와 HETP값을 보여주었다. 한편 시료의 화학처리에 의한 Ar과 CO의 흡착열의 변화는 극성기체인 CO의 경우, 별로 변화가 없지만 무극성기체인 Ar은 영향을 받기가 용이하였다. 또한 carrier gas He의 유속이 대략 20~30ml min범위일때 최소의 HETP값을 가지며 column의 효능이 좋았다.

  • PDF

The study of strength behaviour of zeolite in cemented paste backfill

  • Eker, Hasan;Bascetin, Atac
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.421-434
    • /
    • 2022
  • In the present study, reference samples were prepared using ore preparation facility tailings taken from the copper mine (Kure, Kastamonu), Portland cement (PC) in certain proportions (3 wt%, 5 wt%, 7 wt%, 9wt% and 11 wt%), and water. Then natural zeolite taken from the Bigadic Region was mixed in certain proportions (10 wt%, 20 wt%, 30 wt% and 40 wt%) for each cement ratio, instead of the PC, to prepare zeolite-substituted CPB samples. Thus, the effect of using Zeolite instead of PC on CPB's strength was investigated. The obtained CPB samples were kept in the curing cabinet at a temperature of 25℃ and at least 80% humidity, and they were subjected to the Uniaxial Compressive Strength (UCS) test at the end of the curing periods of 3, 7, 14, 28, 56, and 90 days. Except for the 3 wt% cement ratio, zeolite substitution was observed to increase the compressive strength in all mixtures. Also, the liquefaction risk limit for paste backfill was achieved for all mixtures, and the desired strength limit value (0.7 MPa) was achieved for all mixtures with 28 days of curing time and 7 wt%, 9 wt%, 11 wt% cement ratios and 5% cement - 10% zeolite substituted mixture. Moreover, the limit value (4 MPa) required for use as roof support was obtained only for mixtures with 11% cement - 10% and 20% zeolite content. Generally, zeolite substitution seems to be more effective in early strength (up to 28th day). It has been determined that the long-term strength losses of zeolite-substituted paste backfill mixtures were caused by the reaction of sulfate and hydration products to form secondary gypsum, ettringite, and iron sulfate.

석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果) (Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage)

  • 김용웅;이현희;윤정한;신방섭;김광식
    • 한국토양비료학회지
    • /
    • 제31권2호
    • /
    • pp.95-106
    • /
    • 1998
  • 매년 석탄화력발전소에서 다량으로 배출되어 나오는 폐기물 fly ash를 효율적으로 재활용하고 환경오염을 줄이기 위해서 fly ash를 알카리 처리하여 인공 zeolite를 합성하고 광물학적 특성 및 형태학적 구조를 X-ray, IR, SEM 분석으로 밝혀냈다. 또한 $NH_4{^+}$, $K^+$, $H_2PO_4{^-}$ 이온에 대한 fly ash와 인공 zeolite의 흡착능을 비교하기 위해 반응시간, 시료의 양, 이온의 농도에 따른 흡착량을 조사하였고, 4% PVA(Polyvinylalcohol)용액으로 입자화시킨 인공 zeolite를 다양한 비율로 첨가하여 상토를 제조하고 폿트 실험을 실시한 결과를 종합하면 다음과 같다. 인공 zeolite의 양이온치환용량(CEC)은 $257.7cmol^+kg^{-1}$으로 fly ash의 $7.0cmol^+kg^{-1}$보다 36배나 증가된 값을 보였으며 $SiO_2/Al_2O_3$의 비가 감소하였고, $Na^+$의 양은 증가하였다. 인공 zeolite의 이화학성질, X-ray, IR 분석의 결과를 종합해볼 때 천연 zeolite 조성 ($Na_2O-SiO_2-Al_2O_3-H_2O$)과 유사하였다. SEM 촬영 결과 fly ash는 전체적으로 표면에 전혀 공극이 없는 구형의 형태를 지녔으며, 인공 zeolite는 알카리 처리로 인해 다공성이 큰 물질로 변화되어 표면적이 한층 증대된 것을 볼 수 있었다. fly ash와 인공 zeolite 모두 반응시간이 증가할수록, 시료의 양이 증가할수록, 이온의 농도가 높을수록 흡착량이 많았으며 대체적으로 $NH_4{^+}$ 이온이 $K^+$ 이온보다 더 많은 흡착량을 보였으며, fly ash 보다는 인공 zeolite가 이온에 대한 흡착능이 더 우수함을 볼 수 있었다. NPK+토양+입자상태의 zeolite 20%+퇴비 5%구에서 배추의 생육이 가장 좋았으며 시중 상토의 경우 재배기간이 20일이 넘었을 때 엽이 황색으로 변했지만 제조한 상토에서 자란 배추는 이러한 증상을 나타내지 않았다. 폐기물인 fly ash를 알카리 처리하여 양이온치환용량이 증가된 인공 zeolite를 합성하고 여기에 비료 성분 N, P, K를 첨가하여 입자화 시킨 후 이를 상토제조에 이용하는 것이 석탄회의 부가가치를 높이는 가장 효과적인 방법이라고 판단된다.

  • PDF

Fabrication and Characterization of Titanate Nanotube Supported ZSM-5 Zeolite Composite Catalyst for Ethanol Dehydration to Ethylene

  • Wu, Liangpeng;Li, Xinjun;Yuan, Zhenhong;Chen, Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.525-530
    • /
    • 2014
  • Titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst was fabricated by decorating ZSM-5 zeolite on the hydrothermally synthesized titanium dioxide via hydrothermal process and subsequent annealing. The catalyst was characterized by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM) and Nitrogen adsorption-desorption (BET). The surface acidity of the catalyst was measured by means of Fourier transform infrared (FT-IR) spectrum of pyridine adsorption. And the catalytic activity for ethanol dehydration to ethylene was evaluated in a continuous flow fixed-bed reactor. Attributed to the increase of the effective surface acid sites caused by titanium dioxide nanotube as electron acceptor, titanium dioxide nanotube supported ZSM-5 zeolite composite catalyst exhibits strongly enhanced activity for ethanol dehydration to ethylene.

Linear Low Density Polyethylene (LLDPE)/Zeolite Microporous Composite Film

  • Jagannath Biswas;Kim, Hyun;Soonja Choe;Patit P. Kundu;Park, Young-Hoon;Lee, Dai-Soo
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.357-367
    • /
    • 2003
  • The linear low density polyethylene (LLDPE)/zeolite composite using novel inorganic filler, zeolite, is prepared by a conventional compounding procedure using a twin-screw extruder. The observed scanning electron microscopic (SEM) morphology shows a good dispersion and adhesion of zeolite in the LLDPE matrix. The mechanical properties in terms of the Young's modulus, the yield stress, the impact strength, and the elongation at break were enhanced with a successive increment of zeolite content up to 40 wt%. The X-ray diffraction measurement is of supportive for the improved mechanical properties and the complex melt viscosity is as well. Upon applying a certain level of strain on the composites, the dewetting, the air hole formation and its growth are characterized. The dewetting originates around the filler particles at low strain and induces elliptical micropores upon further stretching. The microporosity such as the aspect ratio, the number and the total area of the air holes is also characterized. Thus, the composites loaded 40 % zeolite and 300 % elongation may be applicable for breathable microporous films with improved modulus, impact and yield stress, elongation at break, microporosity and air hole properties.

BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 II. COD/N비가 질소 및 유기물 제거에 미치는 영향 (Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-II. Effect of COD/N on Removal of NItrogen and Organics)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • 제16권2호
    • /
    • pp.140-145
    • /
    • 2001
  • To treat piggery wastewater containing refractory compounds including nitrogen, physical treatments using zeolite and biological processes were investigated. In biogical treatment, the removal efficiencies of organics and nitrogen in bioreador using BACC (Biological Activated Carbon Cartridge) media filled with granule activated carbon were examined. The best removal efficiencies achieved for TKN and COD(sub)cr were 82% and 53% respectively, when zeolite dosage was 300 g/L. Specific nitrogen removal ability was 3.2 mg/g at a zeolite dosage of 50 g/L, whereas specific nitrogen removal ability was 1.8 mg/g at a zeolite dosage of 300 g/L. The increased of C/N ratio resulting from the removal of nitrogen using zeolite led to an increase in removal efficiency of organics. As C/N ratio was increased to 2.0, 2.44 and 6.58 at a HRT of 48 hours in a BACC bioreactor, removal efficiencies of COD(sub)cr were increased to 53.5%, 57.4% and 80.6%. The removal efficiency of wastewater using a zeolite dosage of 399 g/L was increased by 27.1% compared to that of control treatment.

  • PDF

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers

  • Cevikbilen, Gokhan
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.305-318
    • /
    • 2022
  • Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.