• Title/Summary/Keyword: Zenith

Search Result 224, Processing Time 0.026 seconds

Production of Carpet Sod Using Seed and Runner of Zoysiagrass (Zoysia spp.) (한국잔디(Zoysia spp.)의 종자 및 영양체를 이용한 carpet 잔디 생산)

  • 최준수;양근모;김동섭
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.2
    • /
    • pp.39-50
    • /
    • 2001
  • This research was designed to develop the rapid propagation technology of zoysiagrass using carpet production and to provide turf-growing farmers with efficient cultivation methods thor carpet production. Turfgrass cultivar tested in cadet production by seeding was Z. japonica cv. Zenith. Since the surface coverage rate reached to 85% in 2 months after seeding at the rate 6g/$m^2$ in the early part of July, carpet production using ‘Zenith’seeds would be possible to produce within within the same year. Thrfgrasses tested in carpet production by vegetative propagation were Z. japonica, medium type Z. matrella, fine type Z. matrella, and medium type Z. japonica. Planting rates of vegetative parts (sprigs) were 1.2L/$m^2$, 2.4L/$m^2$, 2.5L/$m^2$, and 5L/$m^2$. Two different sizes of sprig were used; 1~2 nodes and 3~4 nodes. Surface coverage rate was 90% in one year after planting at the rate of 2.5L sprigs of medium type Z. japonica. Therefore, the use of sprigs with 3~4 nodes at the planting rate of 2.5L would be suitable for the carpet prodcution. Three months old zoysiagrass carpet (Zenith) was overseeded with Kentucky bluegrass, perennial ryegrass, and tall fescue at two different overseeding rate. Surface coverage rate was the highest (80%) at the plot overseeded with perennial ryegrass that showed the earliest germination. Suitable overseeding species for the rapid sod formation at the early stage of establishment were tall fescue and perennial ryegrass and desirable overseeding time was from early to middle of September.

  • PDF

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF

Studies on the Varietal resistance to the rice stripe virus disease (줄무늬잎마름병(호엽고병)에 대한 벼품종의 저항성에 관한 연구)

  • Lee S. H.;Kim C. H.
    • Korean journal of applied entomology
    • /
    • v.5_6
    • /
    • pp.47-54
    • /
    • 1968
  • In order to develop an effective control measure for the rice stripe disease, methods of testing for resistance and selection of resistant varieties among the leading varieties were investigated. For use as a parent in breeding for resistant variety to the disease, total of 410 rice varieties were tested. 1. Disease occurrence was higher at group inoculation than that of individual inoculation in comparing the inoculation methods. 2. In both methods, Lacrose responded susceptible; Zenith and St. No. 1 resistant, and the rest moderate. 3. Suseptible symptom type A was prevalant among the susceptible varieties, while resistant symptom type C was abundant among the resistant varieties, There was no difference between the inoculation methods. 4. 410 rice varieties tested could he divided into 3 groups as susceptible (21 varieties), moderate (377 varieties) and resistant (12 varieties). Resistant varieties wers St. No. 1 and 2, Shin-2, Gulfrose Bonnet, Arkrose, Sun Bonnet, Zenith, Yeechunchilichal, Norm-24, Opaikjoke, Yangchubatchal and Nonglimana-1, Nams-97,-149, -159, -216. -265, Iri-243, -265, Kanchuk -5, -7, -8, -10, -41, -43, -47, -50, Suwon-56, -77, Norin-22, Cod-4. Lacrose and Chukna were susceptible. 5. There was slight differance in the disease occurrence in regard to maturing period. However late varieties seem to be more resistant than early or medium varieties. The medium varieties seem to be susceptible. Most of the introduced varieties from foreign countries and the upland cultivated varieties were resistant. 6 Among the leading varieties, Shin-2 in Kangwon-Do was resistant, Kosi in Choongchung-Do, was susceptible, aad the others were moderate.

  • PDF

Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models (GNSS 가강수량 추정시 건조 지연 모델에 의한 복원 정밀도 해석)

  • Nam, JinYong;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.233-242
    • /
    • 2019
  • ZHD (Zenith Hydrostatic Delay) model is important parameter in estimating of GNSS (Global Navigation Satellite System) PWV (Precipitable Water Vapor) along with weighted mean temperature. The ZWD (Zenith Wet Delay) is tend to accumulate the ZHD error, so that biases from ZHD will be affected on the precision of GNSS PWV. In this paper, we compared the accuracy of GNSS PWV with radiosonde PWV using three ZHD models, such as Saastamoinen, Hopfield, and Black. Also, we adopted the KWMT (Korean Weighted Mean Temperature) model and the mean temperature which was observed by radiosonde on the retrieval processing of GNSS PWV. To this end, GNSS observation data during one year were processed to produce PWVs from a total of 5 GNSS permanent stations in Korea, and the GNSS PWVs were compared with radiosonde PWVs for the evaluating of biases. The PWV biases using mean temperature estimated by the KWMT model are smaller than radiosonde mean temperature. Also, we could confirm the result that the Saastamoinen ZHD which is most used in the GNSS meteorology is not valid in South Korea, because it cannot be exclude the possibility of biases by latitude or height of GNSS station.

Retrieval Spectral Albedo using red and NIR band of SPOT/VGT

  • Lee, Chang Suk;Seo, Min Ji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.367-373
    • /
    • 2014
  • Albedo is one of the critical parameters for understanding global climate change and energy/water balance. In this study, we used red and NIR reflectance from Satellite Pour I'Obervation de la Terre (SPOT)/Vegetation (VGT) S1 product. The product is preprocessed for users that they are atmospherically corrected using Simple Method Atmospheric Correction (SMAC) by Vision on Technology (VITO) for calculating broadband albedo. Roujean's Bi-directional Reflectance Distribution Function (BRDF) model is a semi-empirical method used for BRDF angular integration and inversion. Each kernel of Roujean's model was multi integrated by angle components (i.e., viewing zenith, solar zenith, and relative azimuth angle). Black-sky hemispherical function is integrated by observational angle; whereas, white-sky hemispherical efficient is integrated by incident angle. Estimated spectral albedo of red ($0.61{\sim}0.68{\mu}m$, B2) and near infrared ($0.79{\sim}0.89{\mu}m$, B3) have a good agreement with MODIS albedo products.

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

Evaluation of Point Positioning Using the Global Positioning System and the Quasi-Zenith Satellite System as Measured from South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite system currently under development, was designed to complement the performance of the Global Positioning System (GPS). The high elevation angle of the QZSS satellite is expected to enhance the effectiveness of GPS in urban environments. Thus, the work described in this paper, aimed to investigate the effect of QZSS on GPS performance, by processing the GPS and QZSS measurements recorded at the Bohyunsan reference station in South Korea. We used these data, to evaluate the satellite visibility, carrier-to-noise density (C/No), performance of single point positioning, and Dilution of Precision (DOP). The QZSS satellite is currently available over South Korea for 19 hours at an elevation angle of more than 10 degrees. The results showed that the impact of the QZSS on users' vertical positioning is greatest when the satellite is above 80 degrees of elevation. As for Precise Point Positioning (PPP) performance, the combined GPS/QZSS kinematic PPP was found to improve the positioning accuracy compared to the GPS only kinematic PPP.

Characteristics of the Erythemal Ultraviolet-B (EUV-B) Irradiance in Anmyeon (Korea Global Atmosphere Watch Center)

  • Hong, Gi-Man;Park, Jeong-Gyoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.74-82
    • /
    • 2008
  • We have examined seasonal and annual means of clear-sky solar noon and daily erythemal ultraviolet-B irradiances measured in Anmyeon. The intensity of the EUV-B irradiance is mainly dependent on solar zenith angle (SZA) and total ozone amounts on clear day conditions. The daily maximum occurs near solar noon time and the highest monthly accumulated EUV-B is seen in July in Anmyeon. The maximum daily variation occurs in June and July due to precipitation and clouds. The 7-year trend of EUV-B irradiance shows that it is slightly increasing. Additionally, we could confirm that aerosol effects such as Asian Dust decreases the EUV-B irradiance reaching the ground surface by 35% to 60%. For more than 45% of the summer days, EUV-B irradiacne was high enough that the UV index registered higher than category Extremely High. This information will be very important for evaluation of the UV index for prevention of both skin cancer and ecosystem damages as well as to understand UV climatology over the Korean Peninsula.

Estimation of the PAR Irradiance Ratio and Its Variability under Clear-sky Conditions at Ieodo in the East China Sea

  • Byun, Do-Seong;Cho, Yang-Ki
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.235-244
    • /
    • 2006
  • Determining 'photosynthetically active radiation' (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM. Preliminary results suggest that the use of simple PAR irradiance-ratio values is appropriate in calculating phytoplankton productivity as follows: an average of $0.44\;({\pm}0.01)$ in January to an average of $0.48\;({\pm}0.01)$ in July, with average daily variabilities over these periods of about $0.016\;({\pm}0.008)$ and $0.025\;({\pm}0.008)$, respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.

Availability Assessment of GPS Augmentation System Using QZSS at Urban Environment of seoul (서울 도심지에서의 QZSS를 이용한 GPS 확장시스템의 가용도 평가)

  • Yoo, Kyung-Ho;Sung, Sang-Kyung;Kang, Tae-Sam;Lee, Young-Jae;Lee, Eun-Sung;Lee, Sang-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.761-766
    • /
    • 2008
  • This paper analyzes the availability and Dilution Of Precision (DOP) of GPS, widely used in positioning, with and without augmentation using QZSS (Quasi-Zenith Satellite System). Orbit simulator for QZSS is developed using Kepler‘s orbital parameters. Also 3D modeling technique based on three-Dimensional GIS digital map and satellite tracking algorithm for visible satellite simulation system are discussed. Performance improvement of the availability and DOP were achieved by combining GPS with QZSS at urban environment of Seoul.