Browse > Article

Estimation of the PAR Irradiance Ratio and Its Variability under Clear-sky Conditions at Ieodo in the East China Sea  

Byun, Do-Seong (Ocean Research Laboratory, National Oceanographic Research Institute)
Cho, Yang-Ki (Department of Oceanography, College of Natural Sciences, Chonnam National University)
Publication Information
Ocean Science Journal / v.41, no.4, 2006 , pp. 235-244 More about this Journal
Abstract
Determining 'photosynthetically active radiation' (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM. Preliminary results suggest that the use of simple PAR irradiance-ratio values is appropriate in calculating phytoplankton productivity as follows: an average of $0.44\;({\pm}0.01)$ in January to an average of $0.48\;({\pm}0.01)$ in July, with average daily variabilities over these periods of about $0.016\;({\pm}0.008)$ and $0.025\;({\pm}0.008)$, respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.
Keywords
PAR; irradiance; radiative transfer model; ecosystem model; East China Sea; Ieodo;
Citations & Related Records

Times Cited By SCOPUS : 3
연도 인용수 순위
1 Baretta-Bekker, J.G., J.W. Baretta, and W. Ebenhoh. 1997. Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. J. Sea Res., 38, 195-211   DOI   ScienceOn
2 Byun, D.-S., X.H. Wang, M. Zavatarelli, and Y.-K. Cho. 2006. Effects of resuspended sediments and vertical mixing on phytoplankton spring bloom dynamics in a tidal estuarine embayment. J. Mar. Syst. (in press)
3 Gueymard, C. 2001. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy, 71, 325-346   DOI   ScienceOn
4 Jacovides, C.P., F.S. Tymvios, D.N. Asimakopoulos, K.M. Theofilou, and S. Pashiardes. 2003. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor. Appl. Climatol., 74, 227-233   DOI
5 Justus, C.G. and M.V. Paris. 1985. A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere. J. Climat. Appl. Meteor., 24, 193-205   DOI
6 Kasten, F. and A.T. Young. 1989. Revised optical air mass tables and approximation formula. Appl. Opt., 28, 4735   DOI   ScienceOn
7 Kim, J.-Y., B.-C. Choi, and S.-N. Oh. 2002. Spectral aerosol optical depth of Asian dust measured by sunphotometer at Kosan during ACE-Asia. J. Korean Meteorol., 38, 355-367. (In Korean)
8 Morel, A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J. Geophys. Res., 93, 10,749-10,768
9 Parsons, T.R., M. Takahashi, and B. Hargrave. 1984. Biological oceanographic processes. Pergamon Press, Oxford. 330 p
10 Morel, A. and R.C. Smith. 1974. Relation between total quanta and total energy for aquatic photosynthesis. Limnol. Oceanogr., 9, 591-600
11 Baker, K.S. and R. Frouin. 1987. Relation between photosynthetically available radiation and total insolation at the ocean surface under clear skies. Limnol. Oceanogr., 32, 1370-1377   DOI   ScienceOn
12 Gregg, W.W. and K.L. Carder. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr., 35, 1657-1675   DOI   ScienceOn
13 Jitts, H.R., A. Morel, and Y. Saijo. 1976. The relation of oceanic primary production to available photosynthetic irradiance. J. Mar. Freshwater Res., 27, 441-454   DOI
14 Stramska, M. and T. Petelski. 2003. Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res., 108, C3, 3086, doi:10.1029/2002JC001321
15 Goff, J.A. 1957. Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers. p. 347-354. In: The semiannual meeting of the American society of heating and ventilating engineers, Murray Bay, Quebec, Canada
16 Gueymard, C. 1994. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States. Sol. Energy, 53, 57-71   DOI   ScienceOn
17 Zavatarelli, M., J.W. Baretta, J.G. Baretta-Bekker, and N. Pinardi. 2000. The dynamics of the Adriatic Sea ecosystem: An idealized model study. Deep-Sea Res. Part I, 47, 937-970   DOI   ScienceOn
18 Gregg, W.W. 2002. A coupled ocean-atmosphere radiative model for global ocean biogeochemical models. Technical report series on global modeling and data assimilation 22. ed. by M. Suarez. NASA/TM---2002-104606. 19 p
19 Koepke, P. 1984. Effective reflectance of oceanic whitecaps. Appl. Opt., 23, 1816-1824   DOI
20 Colijn, F.G. and C. Cadee. 2003. Is phytoplankton growth in the Wadden Sea light or nitrogen limited? J. Sea Res., 49, 83-93   DOI   ScienceOn
21 Ebenhoh, W., J.G. Baretta-Bekker, and J.W. Baretta.1997. The primary production module in the marine ecosystem model ERSEM II, with emphasis on the light forcing. J. Sea Res., 38, 173-193   DOI   ScienceOn
22 Shim, J.S, I.S. Chun, and I.K. Min. 2004. Construction of Ieodo Ocean Research Station and its operation. Int. Soc. Offshore Polar Eng., 2004, 13, 1-7
23 Byun, D.-S., X.H. Wang, D.E. Hart, and Y.-K. Cho. 2005. Modeling the effect of freshwater inflows on the development of spring blooms in an estuarine embayment. Estuar. Coast. Shelf Sci., 65, 351-360   DOI   ScienceOn
24 Okulov, O., H. Ohvril, and R. Kivi. 2002. Atmospheric precipitable water in Estonia, 1990-2001. Bor. Environ. Res., 7, 291-300
25 Knauss, J.A. 1997. The transfer of heat across the ocean surface. p. 39-58. In Introduction to physical oceanography. Prentice-Hall
26 Smirnov, A, B.N. Holben, O. Dubovik, R. Frouin, T.F. Eck, and I. Slutsker. 2003. Maritime component in aerosol optical models derived from Aerosol Robotic Network data. J. Geophys. Res., 108, D1, 4033, doi:10.1029/2002JC002701
27 Van Heuklon, T. K. 1979. Estimating atmospheric ozone for solar radiation models. Sol. Energy, 22, 63-68   DOI   ScienceOn
28 Tilzer, M.M. and C.R. Goldman. 1978. Importance of mixing, thermal stratification and light adaptation for phytoplankton productivity in Lake Tahoe (California-Nevada). Ecology, 59, 810-821   DOI   ScienceOn
29 Paltridge, G.W. and C.M.R. Platt. 1976. Radiative Processes in Meteorology and Climatology. Elsevier, Amsterdam. 318 p