• 제목/요약/키워드: ZVZCS operation

검색결과 36건 처리시간 0.023초

PWM 컨버터를 위한 향상된 ZVZCS Commutation Cell (An improved Commutation Cell for PWM Converter)

  • 유승희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.388-391
    • /
    • 2000
  • In this paper a modified ZVZCS(zero-voltage/zero-current switching) commutation cell with minimum additional components which provides soft switching at both turn-on and turn-off of main and auxiliary switches as well as diodes in PWM converters is presented. The proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary switch of the proposed ZVZCS commutation cell is in parallel with the main switch and therefore there is no current stress on the main switch and diode. The operation principles of the proposed ZVZCS commutation cell are theoretically analyzed using the PWM boost converter topology as an example. Theoretical analysis simulation and experimental results verify the validity of the PWM boost converter topology with the proposed ZVZCS commutatioin cell.

  • PDF

An Employed Zero Voltage/Zero Current Switching Commutation Cell for All Active Switches in a PWM DC/DC Converter

  • Lee, Dong-Yun;Hyun, Dong-Seok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권4호
    • /
    • pp.183-190
    • /
    • 2002
  • This paper presents an improved Zero Voltage/Zero Current Switching (ZVZCS) commutation cell with minimum additional components, which provides soft switching at both turn-on and turn-off of main and auxiliary switches as well as diodes in a PWM DC/DC converter. The proposed soft-switching technique is suitable for not only minority, but also majority carrier semiconductor devices. The auxiliary switch of the proposed ZVZCS commutation cell is in parallel with the main switch, and therefore, the main switch and the diode are free of currentstress. The operation principles of the proposed ZVZCS commutation cell are theoretically analyzed using the PWM boost converter topology as an example. The validity of the PWM boost converter topology with the proposed ZVZCS commutation cell is verified through theoretical analysis, simulation and experimental results.

1차측 환류다이오드를 제거한 ZVZCS Dual TIFC에 관한 연구 (A Study on the ZVZCS Dual TTFC without Primary Freewheeling Diodes)

  • 한경태;김용;배진용;이은영;이동현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1160-1162
    • /
    • 2003
  • This paper presents ZVZCS(Zero-Voltage and Zero-Current Switching) Dual TTFC(Two-Transistor Forward Converter) without primary freewheeling diodes. The principle of operation, feature and design considerations are illustrated and verified through the ecperiment with a 1.8kW 55kHz MOSFET based experimental circuit.

  • PDF

병렬제어를 적용한 8kW급 영전압/영전류 풀 브릿지 DC-DC 컨버터 개발 (Development of 8kW ZVZCS Full Bridge DC-DC Converter by Parallel Operation)

  • 노민식
    • 전력전자학회논문지
    • /
    • 제12권5호
    • /
    • pp.400-408
    • /
    • 2007
  • 본 논문에서의 병렬제어를 이용한 8kW급 대용량 영전압/영전류 풀 브릿지 DC-DC 컨버터의 개발 결과를 보인다. 본 논문에서는 효율적인 시스템 구성을 위해 4-병렬 단위 모듈 운전을 제안한다. 각 단위모듈은 위상 천이 풀 브릿지를 채택하고, ZVZCS 운전을 위해 간단한 보조 회로를 2차측에 추가하였다. ZCS를 위한 보조 회로 동작 로직은 환류 모드 구간에서 1차측 전류를 제거하도록 구현하였다. 또한 병렬 운전시의 출력 전류의 균등 제어를 위해 위상천이로직을 활용한 Charge Control 방식을 적용하였다. 전압 제어기는 DSP TMS320LF2406을 활용하여 4 모듈의 출력전류 및 출력전압을 A/D로 입력받아 구현하였다. 개발된 컨버터는 차량에 설치되는 고속 발전기용 전력 변환기에 장착되었으며, 구축된 모니터링 시스템으로 고속 발전기의 실제 운전 조건에서 데이터를 획득하여, 분석을 통해 그 성능을 입증하였다.

Ni-Cd전지용 충전 알고리즘을 이용한 고속전철용 ZVZCS형 충전장치개발 (The Development of ZVZCS type Battery Charger for High Speed Trail Car with Ni-Cd Battery Charging Algorithm)

  • 최욱돈;이종필;이재문;김연준
    • 전력전자학회논문지
    • /
    • 제5권5호
    • /
    • pp.493-500
    • /
    • 2000
  • 고속전철용 충전기는 VVVF, CVCF, DC/DC 컨버터에 전원을 공급하고 안정성과 시스템의 신뢰성을 목적으로 하는 중요한 에너지원이다. 본 논문에서는 밧데리 충전 알고리즘과 고속전철용 ZVZCS형 밧데리 충전기의 전력회로를 포함한다. 또한 고속전철용 50kW 충전기의 최적 병렬운전과 Ni-Cd 밧데리의 충전 방법을 설명하고 실험을 통해 타당성을 입증한다.

  • PDF

최소 보조회로를 이용한 ZVS/ ZVZCS Three-Level 컨버터에 관한 연구 (A study on the ZVS/ZVZCS Three-Level converter using the minimum auxiliary circuit)

  • 조규만;김용;배진용;이은영;최근수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.173-176
    • /
    • 2006
  • This paper discusses the ZVS/ ZVZCS Three-Level converter using the minimum auxiliary circuit. A primary auxiliary circuit, which consists of one coupled inductor is added in the primary circuit to provide ZVZCS conditions to primary switches. ZVS is for outer switches and ZCS or ZVS is for inner switches. Many advantages including simple circuit topology high efficiency, and low cost make this converter attractive for high power applications. The principle of operation, feature and design considerations arc illustrated and verified through the experiment with a 2kHz 400kHz IGBT based experimental circuit.

  • PDF

Ni-Cd전지용 충전 알고리즘을 이용한 고속전철용 ZVZCS형 충전장치개발 (The Development of ZVZCS type Battery Charger for High Speed Trail Car with Ni-Cd Battery Charging Algorithm)

  • 김연준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.548-551
    • /
    • 2000
  • The battery charger for high speed trail car is very important power source for the purpose of safty and system stability. it provides control power of VVVF, CVCF, DC/DC converter and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car and battery included power circuit of the ZVZCS type battery charger for high speed trail car and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car an battery charging algorithm. Also the optimum parallel operation of 50Kw battery charger for high speed trail car and charging control method of Ni-Cd battery illustrates validity and effectiveness through the experiments.

  • PDF

Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with Zero Current Ripple

  • Baek, J.-W.;Cho, J.G.;Jeong, C.Y.;Yoo, D.W.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.79-84
    • /
    • 1998
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with low output current ripple is presented. A simple auxiliary circuit added in the secondary provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches, as well as reduces the output current ripple (ideally zero ripple). The auxiliary circuit includes neither lossy components nor additional active switches which are demerits of the previously presented ZVZCS converters. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive for high performance high power (>1kW) applications. The principle of operation, features and design considerations are illustrated and verified on a 2.5kW, 100KHz IGBT based experimental circuit.

  • PDF

2차측에 보조회로를 장착한 풀 브릿지 PWM ZVZCS DC/DC 컨버터 (Full Bridge PWM ZVZCS DC/DC Converter with Secondary Auxiliary Circuit)

  • 황현태;이종규;김혁;이성백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1303-1305
    • /
    • 2000
  • A zero voltage and zero current switching(ZVZCS) fullbridge (FB) PWM converter with secondary auxiliary circuit is proposed. Based on the ZVZCS technique, the ZCS of the lagging-leg switch and ZVS of the leading-leg switch are implemented. And the each secondary side voltage overshoot is decreased by additional secondary auxiliary circuit in this paper. The illustration of its operation principle and the simulation result are presented here.

  • PDF

출력단 결합인덕터를 이용한 영전압 영전류 스위칭 플브릿지 PWM 컨버터 (Novel ZVZCS Full-bridge PWM converter using a coupled output inductor)

  • 최항석;조보형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1270-1273
    • /
    • 2000
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter is proposed. The new converter improves the drawbacks of the previously proposed ZVZCS FB PWM converters [1-5]. A simple auxiliary circuit with neither lossy components nor active switches achieves ZVZCS of the primary switches. Since the proposed converter has many advantages such as simple auxiliary circuit, high efficiency, and low voltage stress of the rectifier diode, it is very attractive for the high power applications. The principles of operation and design considerations are presented. The experimental verifications from 2.5kW prototype converter operating at 70kHz are presented.

  • PDF