• 제목/요약/키워드: ZVS-PWM

검색결과 210건 처리시간 0.022초

Innovative Electromagnetic Induction Eddy Current-based Far Infrared Rays Radiant Heater using Soft Switching PWM Inverter with Duty Cycle Control Scheme

  • Tanaka H.;Sadakata H.;Muraoka H.;Okuno A.;Hiraki E.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.64-68
    • /
    • 2001
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction heated type far infrared rays radiant heating appliance using the voltage-fed edge-resonant ZVS-PWM high frequency inverter using IGBTs for food cooking and processing which operates under a constant frequency variable power regulation scheme. This power electronic appliance with soft switching high frequency inverter using IGBTs has attracted special interest from some advantageous viewpoints of safety, cleanliness, compactness and rapid temperature response, which is more suitable for consumer power electronics applications.

  • PDF

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • 조명전기설비학회논문지
    • /
    • 제21권4호
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

새로운 풀-브리지 소프트 스위칭 PWM 인버터를 이용한 용접기용 DC-DC 컨버터의 개발 (Development of Arc Welding Machines DC-DC Converter using A Novel Full-Bridge Soft Switching PWM Inverter)

  • 권순걸;문상필
    • 조명전기설비학회논문지
    • /
    • 제22권6호
    • /
    • pp.26-33
    • /
    • 2008
  • 본 연구에서는 일반적으로 용접기의 전원장치로 사용되어지는 풀-브리지 회로에 1개의 스위치와 1개의 무손실스너버 부분 공진 커패시터로 구성된 간단한 액티브 보조 부분 공진 스너버를 추가한 새로운 풀-브리지 소프트 스위칭 PWM DC-DC 컨버터를 제안하였다. 제안한 풀-브리지 소프트 스위칭 DC-DC 컨버터 회로는 각 액티브 스위치에 인가된 전압이 DC 버스 라인 전압의 1/2로 되기 때문에 AC 400(V)계 상용전원 라인에 적용할 경우에도 600(V)내압의 스위칭 소자(IGBT)가 적용 가능하며, 기존 회로의 DC버스 라인 스위치에 발생되는 도통 손실을 저감하여 고주파 변압기의 1차측의 전류가 2차측보다 작아지는 저 전압, 대전류 직류 출력을 얻어 수 있었다. 그리고 모든 영역에서 ZCS/ZVS 동작함으로써 저전압, 대전류 직류 출력의 스위칭 전원 장치에 있어 고주파, 고효율, 고출력을 실현할 수 있다. 이러한 모든 사항은 시뮬레이션과 실험 결과로부터 도출하였으며, 제안한 회로의 단점을 보완할 경우에는 차세대형 TIG MIG MAG 아크 용접기용 전원으로 용이할 것으로 판단된다.

Development of Induction Heater Hot Water System using New Active Clamping Quasi Resonant ZVS PWM Inverter

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • 조명전기설비학회논문지
    • /
    • 제22권11호
    • /
    • pp.23-29
    • /
    • 2008
  • This paper presents a new conceptual electromagnetic induction eddy current based stainless steel plate spiral type heater for heat exchanger or dual packs heater in hot water system boiler steamer and super heated steamer, which is more suitable and acceptable for new generation consumer power applications. In addition, an active clamping quasi-resonant PWM high frequency inverter using trench gate IGBTs power module can operate under a principle of zero voltage soft commutation with PWM is developed and demonstrated for a high efficient induction heated hot water system and boiler in the consumer power applications. This consumer induction heater power appliance using active clamping soft switching PWM high frequency inverter is evaluated and discussed on the basis of experimental results.

향상된 PWM 성능을 갖는 유사 병렬 공진형 DC Link 인버터 (Quasi Parallel Resonant DC Link Inverter with Improved PWM Capability)

  • 정용채;정창용;황종태;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.525-527
    • /
    • 1994
  • A quasi parallel resonant do-link (QPRDCL) circuit with improved PWM capability is Proposed for tile zero voltage switching (ZVS) three phase PWM inverter. The peak voltage stresses of switches are all clamped to the dc-link voltage $V_d$. The proposed QPRDCL inverter has highly improved PWM capability due to selecting the on/off instants of the resonant link at will. Operational principles and analyses of the proposed QPRDCL circuit are explained and verified by simulation results.

  • PDF

새로운 제로 전압 스위칭 PWM 인버터 (New Zero-Voltage-Switching PWM Inverter)

  • 곽동걸;이현우;서기영;권순걸;우정인
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1992년도 추계학술발표회논문집
    • /
    • pp.47-50
    • /
    • 1992
  • In this paper, the authors propose a so-called new zero voltage switching circuit topology arts an improved PWM strategy. In order to minimize voltage stress in dc-ac high switching frequency power conversion, the proposal circuit is used as interface between DC sully and the PWM inverter. The new ZVS circuit provide PWM inverter with a short zero voltage period in the dc 1ink just before inverter switches operate. By using the proposed modulating signal (transformational sinewave) art carrier sinal (sawtooth ware), the amplitude of the fundamental component is increased about 15 percent more than that of a conventional sinusoidal modulating signal and triangular carrier signal, the switching tosses is reduced. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation

  • Lee Sung-Sae;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.131-138
    • /
    • 2006
  • An active clamp ZVS PWM forward converter using a secondary synchronous switch control is proposed in this paper. The proposed converter is suitable for low-voltage and high-current applications. The structure of the proposed converter is the same as a conventional active clamp forward converter. However, since it controls the secondary synchronous switch to build up the primary current during a very short period of time, the ZVS operation is easily achieved without any additional conduction losses of magnetizing current in the transformer and clamp circuit. Furthermore, there are no additional circuits required for the ZVS operation of power switches. Therefore, the proposed converter can achieve high efficiency with low EMI noise, resulting from soft switching without any additional conduction losses, and shows high power dens~ty, a result of high efficiency, and requires no additional components. The operational principle and design example are presented. Experimental results demonstrate that the proposed converter can achieve an excellent ZVS performance throughout all load conditions and demonstrates significant improvement in efficiency for the 100W (5V, 20A) prototype converter.

Implementation of a ZVS Three-Level Converter with Series-Connected Transformers

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.177-185
    • /
    • 2013
  • This paper studies a soft switching DC/DC converter to achieve zero voltage switching (ZVS) for all switches under a wide range of load condition and input voltage. Two three-level PWM circuits with the same power switches are adopted to reduce the voltage stress of MOSFETs at $V_{in}/2$ and achieve load current sharing. Thus, the current stress and power rating of power semiconductors at the secondary side are reduced. The series-connected transformers are adopted in each three-level circuit. Each transformer can be operated as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer from the input side to the output side. Therefore, no output inductor is needed at the secondary side. Two center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Due to the resonant behavior by the resonant inductance and resonant capacitance at the transition interval, all switches are turned on at ZVS. Experiments based on a 1kW prototype are provided to verify the performance of proposed converter.

영전압 스위칭 컨버터의 고속 스위칭에 관한 연구 (A Study On The High Frequency Switching Of Zero Voltage Switching Converter)

  • 김인수;김의찬;이병하;성세진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.537-539
    • /
    • 1996
  • In this paper, a design method of the phase shift ZVS-PWM converter is proposed to minimize the volume and increase the efficiency. The trade-offs of switching frequency, efficiency vs volume and ZVS range vs efficiency is also presented. The simulation of the designed converter is performed using the P-SPICE in which a phase-shift controller is proposed. For minimization of the converter volume, switching frequency is selected 100kHz, a simple drive circuit and single auxiliary supply are applied. In consideration of efficiency and load condition, ZVS range is decided from 50% to full load. A 28V, 1Kwatt prototype converter, of which the switch is MOSFET is made, verified the performance.

  • PDF