• Title/Summary/Keyword: ZVS turn-on

Search Result 106, Processing Time 0.019 seconds

Interleaved DC-DC Converters with Partial Ripple Current Cancellation

  • Lin, Bor-Ren;Chiang, Huann-Keng;Cheng, Chih-Yuan
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.249-257
    • /
    • 2012
  • An interleaved PWM converter is proposed to implement the features of zero voltage switching (ZVS), load current sharing and ripple current reduction. The proposed converter includes two ZVS converters with a common clamp capacitor. With the shared capacitor, the charge balance of the two interleaved parts is automatically regulated under input voltage and load variations. The active-clamping circuit is used to realize the ZVS turn-on so that the switching losses on the power switches are reduced. The ZVS turn-on of all of the switching devices is achieved during the transition interval. The interleaved pulse-width modulation (PWM) operation will reduce the ripple current and the size of the input and output capacitors. The current double rectifier (CDR) is adopted in the secondary side to reduce output ripple current so that the sizes of the output chokes and capacitor are reduced. The circuit configuration, operation principles and design considerations are presented. Finally experimental results based on a 408W (24V/17A) prototype are provided to verify the effectiveness of the proposed converter.

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

A Study of ZC-ZVS PWM Boost Converter (ZC-ZVS PWM 승압형 컨버터에 관한 연구)

  • Kim Tea-Woo;Jung Hyo-Geun;Ahn Hee-Wook;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.211-214
    • /
    • 2001
  • This paper introduces a ZC-ZVS PWM(Pulse-Width -Modulation) boost converter. The IGBT(main switch) of the proposed converter is always switched at ZCS and soft switching of MOSFET(auxiliary switch) as well. Therefore, the proposed converter minimized the turn on/turn off switching losses of switches and reduced conduction losses by using IGBT switch. Moreover, using paralleled IGBT-MOSFET switch overcame the switching frequency limitation. Therefore high power density system can be realized. As mentioned above, the characteristics are verified through experimental results.

  • PDF

A Study on PFC of Active Clamp ZVS Flyback Converter (능동 클램프 ZVS 플라이백 컨버터의 역률개선에 관한 연구)

  • 최태영;류동균;이우석;안정준;원충연;김수석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.49-57
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flybark converter by adding two method PFC (Power Factor Correction) circuit-two-stage and single-stage. The addition of active clamp circuit also provide a mechanism fur achieving ZVS of both the primary and auxiliary switches. ZVS also limits the turn off di/dt of the output rectifier, reducing rectifier switching loss and switching noise, due to diode reverse recovery. As a results, the proposed converters have characteristics of the reduced switching noise and high efficiency in comparison to conventional flyback converter. The simulation and experimental results show that the proposed converters improve the input PF of 300[W] ZVS flyback converter by adding single-stage two-stage PFC circuit.

  • PDF

A Study on PFC of Active Clamp ZVS Flyback Converter

  • Choi Tae-Young;Ahn Jeong-Joon;Ryu Dong-Kyun;Lee Woo-Suk;Won Chung-Yuen;Kim Soo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.611-616
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flyback converter by adding two methods PFC (power Factor Correction) circuit - two-stage and single-stage. The addition of active clamp circuit also provides a mechanism for achieving ZVS of both the primary and auxiliary switches. ZVS also limits the turn off di/dt of the output rectifier, reducing rectifier-switching loss and switching noise, due to diode reverse recovery. As a result, the proposed converters have characteristics of the reduced switching noise and high efficiency in comparison to conventional flyback converter. The simulation and experimental results show that the proposed converter improve the input PF of 300W ZVS flyback converter by adding single-stage, two-stage PFC circuit.

  • PDF

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

A Study on Development of Power Supply for High Frequency Induction Heating (고주파 유도가열용 전원장치의 개발에 관한 연구)

  • Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 2002
  • This paper proposed LC resonant current fed high frequency inverter for high frequency induction heating using leakage inductance of transformer and, its described operating principle. The analysis of circuit presented by using normalized parameter in considering leakage inductance of transformer and, discussed characteristic evaluation of inverter circuit in detail. The proposed inverter is operating ZVS to reduce turn-on and turn-off loss of switching devices so, raised an efficiency. And, the experimental apparatus was made on base characteristic evaluation of theoretical analysis to discuss possibility on high frequency source and confirmed a rightfulness theoretical analysis. A result of study, the proposed inverter is higher utilizing factor using on leakage inductance of transformer and show possibility, which is application on high frequency power system.

  • PDF

A Study on a Boost-Input Self-Driven Active Clamp ZVS Converter (자기구동 능동 클램프를 이용한 부스트 입력형 ZVS 컨버터에 관한 연구)

  • Jin, Ho-Sang;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.781-788
    • /
    • 2011
  • This paper proposes a boost-input self-driven active clamp ZVS converter eliminating the extra dirve circuit for the active clamp switch. The converter used the auxiliary winding of the transformer to drive the active clamp switch and to achieve asymmetrical duty control. This paper presents the operation principle and the analyzed results of dynamic characteristics including steady state characteristics of the converter proposed. The experimental results were used to verify the theoretical predictions. A 300W (15V/20A) prototype converter that only exhibited 2-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input voltage of 80V. Finally, the maximum efficiency of 91.2% was achieved for the prototype converter and the proposed converter had stable closed loop characteristic with phase margin $55^{\circ}$.

The Impact of Parasitic Elements on Spurious Turn-On in Phase-Shifted Full-Bridge Converters

  • Wang, Qing
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.883-893
    • /
    • 2016
  • This paper presents a comprehensive analysis of the spurious turn-on phenomena in phase-shifted full-bridge (PSFB) converters. The conventional analysis of the spurious turn-on phenomenon does not establish in the PSFB converter as realizing zero voltage switching (ZVS). Firstly, a circuit model is proposed taking into account the parasitic capacitors and inductors of the transistors, as well as the parasitic elements of the power circuit loop. Second, an exhaustive investigation into the impact of all these parasitic elements on the spurious turn-on is conducted. It has been found that the spurious turn-on phenomenon is mainly attributed to the parasitic inductors of the power circuit loop, while the parasitic inductors of the transistors have a weak impact on this phenomenon. In addition, the operation principle of the PSFB converter makes the leading and lagging legs have distinguished differences with respect to the spurious turn-on problems. Design guidelines are given based on the theoretical analysis. Finally, detailed simulation and experimental results obtained with a 1.5 kW PSFB converter are given to validate proposed analysis.

A new lossless snubber for DC-DC converters with energy transfer capability

  • Esfahani, Shabnam Nasr;Delshad, Majid;Tavakoli, Mohhamad Bagher
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.385-391
    • /
    • 2020
  • In this paper, a new passive lossless snubber circuit with energy transfer capability is proposed. The proposed lossless snubber circuit provides Zero-Current Switching (ZCS) condition for turn-on instants and Zero-Voltage Switching (ZVS) condition for turn-off instants. In addition, its diodes operate under soft switching condition. Therefore, no significant switching losses occur in the converter. Since the energy of the snubber circuit is transferred to the output, there are no significant conduction losses. The proposed snubber circuit can be applied on isolated and non-isolated converters. To verify the operation of the snubber circuit, a boost converter using the proposed snubber is implemented at 70W. Also, the measured conducted Efficiency Electromagnetic Interference (EMI) of the proposed boost converter and conventional ones are presented which show the effects of proposed snubber on EMI reduction. The experimental results confirm the presented theoretical analysis.