• 제목/요약/키워드: ZVS switching

검색결과 615건 처리시간 0.023초

박막 인덕터를 이용한 ZVS-CV 컨버터에 관한 연구 (A Study on the ZVS-CV Converter Using Thin-Film Inductor)

  • 임상언;김영재;김희준;김형준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2522-2525
    • /
    • 1999
  • Buck converter is considered to be one of the most widely used DC-DC converters due to its simple structure and high reliable performance. However, when it be combined with thin-film inductor, its own low inductance requires higher switching frequency in order to maintain optimum output ripple voltage and thus gives rise to extra switching losses. In view to overcoming such a technical in-convenience, soft switching fashion is suggested such as zero-voltage-switching of which an well known example is a Zero-Voltage-Switching clamp voltage(ZVS-CV) converter for which low inductance is imperatively required for ZVS operation. In order to support our suggestion, a 1W of ZVS-CV buck converter( Vo=3.3V, Iomax=0.3A, fs= 1.2MHz) is built by use of thin-film inductor, and then tested for comparing the measured efficiency between ours and conventional one. As the our results. the efficiency is improved about 2% at full load by the application of our concept.

  • PDF

Full-bridge Converter의 새로운 ZVS 스위칭 기법 (Novel ZVS Switching Method of Full-bridge Converter)

  • 김승룡;선한걸;한만승;박성준
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.477-483
    • /
    • 2011
  • 일반적인 DC/DC 전력변환기의 스위칭 방식은 하드 스위칭 방식과 공진을 이용한 소프트 스위칭 방식으로 분류할 수 있으며, 하드 스위칭 방식은 스위치의 턴 온/오프시 스위칭 소자에 생기는 전력손실이 커서 효율 면에서 불리하며, 공진형 소프트 스위칭 방식은 별도의 리액터와 커패시터를 추가함으로서 시스템의 사이즈와 비용이 증가하는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위해 새로운 스위칭 방식의 소프트 스위칭 방식의 Full-bridge 전력변환기의 구조를 제안하였으며, 제안된 소프트 스위칭 방식은 앞단의 벅 컨버터의 다이오드 전류시 영전압이 되는 구간에서 Full-Bridge 컨버터의 스위치를 교변 함으로써 리액터와 커패시터의 추가없이 소프트 스위칭을 이루어냄으로서 시스템의 효율과 신뢰성을 향상시킨다. 또한 제안된 절연형 소프트 Full-bridge DC/DC 컨버터의 타당성을 검증하기 위해 Psim을 이용한 시뮬레이션과 500[W]급 DC/DC 컨버터를 제작하여 DC/DC 컨버터의 효율이 우수함을 확인하였다.

Boost 입력형 능동클램프 Forward ZVS Converter (Characteristics of Boost Input Type Active Clamp Forward ZVS Converter)

  • 오용승;김희준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2002
  • This paper proposes the boost input type active clamp forward ZVS(zero voltage switching) DC-DC converter which can provide high efficiency and improved EMI characteristics. Moreover, it has active clamp circuit for reducing the voltage stress and zero voltage switching technique for minimizing switching loss. The detailed operation principles and the simulation results are presented.

  • PDF

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

소프트 스위칭 방식의 보조 회로를 갖는 영전압 스위칭 부스트 컨버터 (ZVS Boost Converter with Soft Switching Auxiliary Circuit)

  • 송인범;박건욱;정두용;김동성;정용채;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.487-488
    • /
    • 2010
  • This paper proposes a soft switching boost converter with an auxiliary circuit. This circuit helps a main switch operate as a soft switching. The main switch operates ZVS turn-on and ZVS turn-off. And the auxiliary switch operates ZCS turn-on and ZVS turn-off. In this paper, operation modes are analyzed and soft switching operation is verified through simulations.

  • PDF

Full ZVS Load Range Diode Clamped Three-level DC-DC Converter with Secondary Modulation

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.93-101
    • /
    • 2016
  • A new four-primary-switch diode clamped soft switching three-level DC-DC converter (TLDC) with full zero-voltage switching (ZVS) load range and TL secondary voltage waveform is proposed. The operation principle and characteristics of the presented converter are discussed, and experimental results are consistent with theoretical predictions. The improvements of the proposed converter include a simple and compact primary structure, TL secondary rectified voltage waveform, wide load range ZVS for all primary switches, and full output-regulated range with soft switching operation. The proposed converter also has some disadvantages. The VA rating of the transformer is slightly larger than that of conventional TLDCs in variable input and constant output mode. The conduction loss of the primary coil is slightly higher because an air gap is inserted into the magnetic cores of the transformer. Finally, the secondary circuit is slightly complex.

A Study on PFC of Active Clamp ZVS Flyback Converter

  • Choi Tae-Young;Ahn Jeong-Joon;Ryu Dong-Kyun;Lee Woo-Suk;Won Chung-Yuen;Kim Soo-Seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.611-616
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flyback converter by adding two methods PFC (power Factor Correction) circuit - two-stage and single-stage. The addition of active clamp circuit also provides a mechanism for achieving ZVS of both the primary and auxiliary switches. ZVS also limits the turn off di/dt of the output rectifier, reducing rectifier-switching loss and switching noise, due to diode reverse recovery. As a result, the proposed converters have characteristics of the reduced switching noise and high efficiency in comparison to conventional flyback converter. The simulation and experimental results show that the proposed converter improve the input PF of 300W ZVS flyback converter by adding single-stage, two-stage PFC circuit.

  • PDF

1차 지연회로를 사용한 ZVS Full-Bridge 컨버터 구동회로 설계 (The Driving Circuit Design for ZVS Full-Bridge Converter with 1st Order Delay Circuit)

  • 조내수;최연호;윤경섭;구본호;권우현
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.569-574
    • /
    • 2010
  • The full bridge converter have been used for high power system that is needed to switch the big current. So, EMI and stability problem is occurred. The Soft switching method is the solution to solve the above problem, But implementation of soft switching(ZVS: Zero Voltage Switching) is so complicate and expensive because of the DSP MCU and shift circuit. In this paper, we introduce the technical method for driving circuit of ZVS full bridge converter with 1st order delay circuit and logic elements. The realization of this method is so simple and cheap. The effectiveness of the proposed circuit is verified by experimental results.

1차측 클램핑 다이오드를 이용한 ZVS Three-Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter using Primary Clamping Diodes)

  • 김용
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.101-108
    • /
    • 2013
  • This paper presents A Zero-Voltage-Switching(ZVS) Three-Level DC/DC Converter using Primary Clamping Diodes. The Previous ZVS Three-Level DC/DC converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level DC/DC converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage.

Analysis, Design, and Implementation of a Soft-Switched Active-Clamped Forward Converter with a Current-Doubler Rectifier

  • Jang, Paul;Kim, Hye-Jin;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.894-904
    • /
    • 2016
  • This study examines the zero-voltage switching (ZVS) operation of an active-clamped forward converter (ACFC) with a current-doubler rectifier (CDR). The ZVS condition can be obtained with a much smaller leakage inductance compared to that of a conventional ACFC. Due to the significantly reduced leakage inductance, the design is optimized and the circulating loss is reduced. The operation of the ACFC with a CDR is analyzed, and a detailed ZVS analysis is conducted on the basis of a steady-state analysis. From the results, a design consideration for ZVS improvement is presented. Loss analyses of the converters shows that enhanced soft-switching contributes to an efficiency improvement under light-load condition. Experimental results from a 100-W (5-V/20-A) prototype verify that the ACFC with a CDR can attain ZVS across an extended load range of loads and achieve a higher efficiency than conventional ACFCs.