• Title/Summary/Keyword: ZVS converter

Search Result 597, Processing Time 0.035 seconds

ZVS PWM Converter For Battery Charger (배터리 충전기용 영전압 PWM 컨버터)

  • 정규범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.375-381
    • /
    • 1998
  • Zero Voltage Switched (ZVS) Pulse Width Modulation (P~마1) converter which operates a fixed frequency is proposed in this paper. The main switches of the converter are always switched at zero voltage, and the auxiliaη switches are s softly switched, The voltage and current stresses of the switches are minimized as low as in conventional PWM converters, The suggested buck typed converter is analyzed. designed for a battery charger. The designed characteristics are experimentally verified by the results of the buck type converter.

  • PDF

A Study on the High Performance Active Clamp ZVS Flyback Converter for RF Generator (RF 발생기용 고성능 능동 클램프 ZVS 플라이백 컨버터에 관한 연구)

  • Lee W.S.;Kim J.H.;Won C.Y.;Choi D.K.;Choi S.D.;KIM S.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.534-537
    • /
    • 2001
  • This paper deals with the active clamp ZVS flyback converter for RF generator. The proposed converter has the characteristics of the low switching noise and high efficient regarding conventional flyback converter. To verify validity of the proposed converter, the 100kHz, 48V, 300W converter are simulation and experimental result. This converter will be apply to the discharge drive circuit for PDP(Plasma Display Panel) TV.

  • PDF

Three Level DC/DC Converter Using Energy Recovery Snubber (에너지 회생 스너버를 적용한 3레벨 DC/DC 컨버터)

  • 조용현;김윤호;김은수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.64-73
    • /
    • 2001
  • This paper presents a Zero Voltage and Zero Current Switching (ZVZCS) 3-Level DC/DC converter. This converter overcomes the drawbacks presented by the conventional Zero Voltage Switching(ZVS) 3-Level converter, such as high circulating energy, severe parastic ringing on the rectifier diodes, and limited ZVS load range for the inner switches. The converter presented in this paper uses a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switches. Additionally, the converter uses an energy recovery snubber to reset the primary current during the free-wheeling stage to achieve ZCS for the inner switches. The proposed converters are analyzed and verified on 6kW, 39kHz experimental prototype.

  • PDF

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

Analysis and Design of High-Power, High-Frequency Charging Circuit using FB-ZVS Converter (FB-ZVS 콘버터를 이용한 대용량.고주파 충전회로의 해석 및 설계)

  • Lee, Ki-Young;Cha, Young-Kil;Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.453-457
    • /
    • 1996
  • DC/DC converter is widely used in computer, electronic communication and industrial apparatus where the regulated dc supply is needed. FB-ZVS converter is suitable for high-power, high-frequency and constant frequency control. Because the voltage stress of the diode rectifier is high due to the ring effect, the clamp circuit is essential to reduce the voltage stress. The nondissipative active clamp circuit eliminates ring effect. Analysis of FB-ZVS converter and the validity of the active clamp circuit are studied through the simulation, and the experimental results show the superior characterics of the proposed system.

  • PDF

A Design of Phase-Shifted FB-ZVS PWM Converter for Driving Magnetron and Its Average Anode Current Controller

  • Lee Wan-Yun;Chung Gyo-Bum;Shin Pan-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.140-145
    • /
    • 2001
  • This paper proposes to use a 20[kHz] phase­shifted Full-Bridge (FB) Zero-Voltage-Switched (ZVS) PWM converter in order to drive a 600[W] magnetron, and analyzes the operational modes in a switching period. Additionally, the controller of the average anode current is designed. Simulation studies and experiments verify that the proposed converter and the average anode current controller shows good performance to drive the magnetron.

  • PDF

A wide ZVS range two-transformer active-clamp forward converter with low conduction loss (낮은 도통손실을 가지며 넓은 영전압 스위칭 범위를 갖는 두 개의 변압기를 이용한 능동 클램프 포워드 컨버터)

  • Moon Sang-Cheol;Park Ki-Bum;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.369-371
    • /
    • 2006
  • Conventional active-clamp forward converter has narrow ZVS range of main switch. Although utilizing high magnetizing current can realize wide ZVS range, it increases the conduction loss. To solve this problem, a new asymmetric two-transformer active clamp forward converter is proposed. Proposed converter achieves wide ZVS range without severe conduction loss penalty, which results in high efficiency and high power density.

  • PDF

A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter using Primary Clamping Diodes (1차측 클램핑 다이오드를 이용한 ZVS Three-Level DC/DC 컨버터에 관한 연구)

  • Chon, Yong-Jin;Kim, Yong;Bae, Jin-Yong;Kim, Pil-Soo;Lee, Eun-Young;Chang, Boo-Hoan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.164-168
    • /
    • 2004
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage.

  • PDF

Dynamic Characteristics of Boost Input Type ZVS Converter using the Active Clamp Circuit (능동 클램프 회로를 이용한 Boost 입력형 ZVS 컨버터의 동특성 해석)

  • Kim, Seong-Nam;O, Yong-Seung;Kim, Hui-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.595-600
    • /
    • 2002
  • This paper presents the analyzed results of dynamic characteristics including steady state characteristics of the boost input type ZVS converter using the active clamp circuit by the state space averaging method. From the results, it can be seen that the converter has the 5th order transfer functions and the stable closed loop characteristic is obtained by using the compensated error amplifier with 2-pole and 1-zero. The validity of all analyzed results are verified by measurement.

A Study on PFC of Active Clamp ZVS Flyback Converter (능동 클램프 ZVS 플라이백 컨버터의 역률개선에 관한 연구)

  • Choi T.Y.;Ahn J.J.;Ryu D.K.;Lee W.S.;Won C.Y.;Kim S.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.538-541
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flyback converter by adding two method PFC (Power Factor Correction) circuit - Two-Stage and Single-Stage. It improves on Flyback converter's disadvantage - loss increasing by switching, noise increasing, high voltage stress of switch - by adding active clamp circuit. Simulation results show to improve the input PF of 300W ZVS flyback converter by adding Single-Stage, Two-Stage PFC circuit.

  • PDF