• Title/Summary/Keyword: ZF set theory

Search Result 3, Processing Time 0.017 seconds

A reconstruction of the G$\ddot{o}$del's proof of the consistency of GCH and AC with the axioms of Zermelo-Fraenkel set theory

  • Choi, Chang-Soon
    • Journal for History of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.59-76
    • /
    • 2011
  • Starting from a collection V as a model which satisfies the axioms of NBG, we call the elements of V as sets and the subcollections of V as classes. We reconstruct the G$\ddot{o}$del's proof of the consistency of GCH and AC with the axioms of Zermelo-Fraenkel set theory by using Mostowski-Shepherdson mapping theorem, reflection principles in Tarski-Vaught theorem and Montague-Levy theorem and the fact that NBG is a conservative extension of ZF.

On Coefficients of a Certain Subclass of Starlike and Bi-starlike Functions

  • Mahzoon, Hesam;Sokol, Janusz
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.513-522
    • /
    • 2021
  • In this paper we investigate a subclass 𝓜(α) of the class of starlike functions in the unit disk |z| < 1. 𝓜(α), π/2 ≤ α < π, is the set of all analytic functions f in the unit disk |z| < 1 with the normalization f(0) = f'(0) - 1 = 0 that satisfy the condition $$1+\frac{{\alpha}-{\pi}}{2\;sin\;{\alpha}}. The class 𝓜(α) was introduced by Kargar et al. [Complex Anal. Oper. Theory 11: 1639-1649, 2017]. In this paper some basic geometric properties of the class 𝓜(α) are investigated. Among others things, coefficients estimates and bound are given for the Fekete-Szegö functional associated with the k-th root transform [f(zk)]1/k. Also a certain subclass of bi-starlike functions is introduced and the bounds for the initial coefficients are obtained.