KYUNGPOOK Math. J. 61(2021), 513-522 https://doi.org/10.5666/KMJ.2021.61.3.513 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On Coefficients of a Certain Subclass of Starlike and Bi– starlike Functions

HESAM MAHZOON

Department of Mathematics, Islamic Azad University, West Tehran Branch, Tehran, Iran

 $e\text{-}mail: \texttt{mahzoon_hesam@yahoo.com}$

JANUSZ SOKÓŁ* College of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland e-mail: jsokol@ur.edu.pl

ABSTRACT. In this paper we investigate a subclass $\mathcal{M}(\alpha)$ of the class of starlike functions in the unit disk |z| < 1. $\mathcal{M}(\alpha)$, $\pi/2 \leq \alpha < \pi$, is the set of all analytic functions f in the unit disk |z| < 1 with the normalization f(0) = f'(0) - 1 = 0 that satisfy the condition

$$1 + \frac{\alpha - \pi}{2\sin\alpha} < \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 1 + \frac{\alpha}{2\sin\alpha} \quad (z \in \Delta).$$

The class $\mathcal{M}(\alpha)$ was introduced by Kargar et al. [Complex Anal. Oper. Theory 11: 1639–1649, 2017]. In this paper some basic geometric properties of the class $\mathcal{M}(\alpha)$ are investigated. Among others things, coefficients estimates and bound are given for the Fekete-Szegö functional associated with the *k*-th root transform $[f(z^k)]^{1/k}$. Also a certain subclass of bi-starlike functions is introduced and the bounds for the initial coefficients are obtained.

1. Introduction

Let \mathcal{A} be the class of functions f of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic and normalized by f(0) = f'(0) - 1 = 0 in the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. The subclass of \mathcal{A} of all univalent functions f in Δ is denoted

^{*} Corresponding Author.

Received June 6, 2019; revised June 22, 2020; accepted July 2, 2020.

²⁰²⁰ Mathematics Subject Classification: 30C45.

Key words and phrases: analytic functions, starlike and bi–starlike functions, subordination, Fekete-Szegö inequality.

H. Mahzoon and J. Sokół

by S. We denote by \mathcal{P} the well-known class of analytic functions p with p(0) = 1and $\operatorname{Re}(p(z)) > 0, z \in \Delta$. We also denote by \mathcal{B} the class of analytic functions w(z)in Δ with w(0) = 0 and $|w(z)| < 1, z \in \Delta$. If f and g are two functions in \mathcal{A} , then we say that f is subordinate to g, written $f(z) \prec g(z)$, if there exists a function $w \in \mathcal{B}$ such that f(z) = g(w(z)) for all $z \in \Delta$. As a special case, if the function gis univalent in Δ , then we have the following equivalence:

$$f(z) \prec g(z) \Leftrightarrow (f(0) = g(0) \text{ and } f(\Delta) \subset g(\Delta)).$$

A function $f \in S$ is *starlike* (with respect to 0) if $tw \in f(\Delta)$ whenever $w \in f(\Delta)$ and $t \in [0, 1]$. The class of starlike functions is denoted by S^* . We say that $f \in S^*(\gamma)$ $(0 \leq \gamma < 1)$ if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma \quad (z \in \Delta).$$

The equality $S^*(0) = S^*$ is well known. Recently Kargar *et al.* (see [4]) introduced a certain subclass of starlike functions as follows.

Definition 1.1. Let $\pi/2 \leq \alpha < \pi$. Then the function $f \in \mathcal{A}$ belongs to the class $\mathcal{M}(\alpha)$ if f satisfies

(1.2)
$$1 + \frac{\alpha - \pi}{2\sin\alpha} < \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 1 + \frac{\alpha}{2\sin\alpha} \qquad (z \in \Delta).$$

Consider the function ϕ as follows

$$\phi(\alpha) := 1 + \frac{\alpha - \pi}{2\sin\alpha} \quad (\pi/2 \le \alpha < \pi).$$

It is clear that $\phi(\pi/2) = 1 - \pi/4 \approx 0.2146$ and

$$\lim_{\alpha \to \pi^{-}} \phi(\alpha) = \frac{1}{2}.$$

Thus, the class $\mathcal{M}(\alpha)$ is a subclass of the class $f \in S^*(\phi(\pi/2))$ of starlike functions of order $\phi(\pi/2) = 1 - \pi/4$.

By the subordination principle we have the following lemma.

Lemma 1.2. (see [4]) Let $f(z) \in A$ and $\pi/2 \leq \alpha < \pi$. Then $f \in \mathcal{M}(\alpha)$ if and only if

(1.3)
$$\left(\frac{zf'(z)}{f(z)} - 1\right) \prec \mathcal{B}_{\alpha}(z) \qquad (z \in \Delta).$$

where

(1.4)
$$\mathcal{B}_{\alpha}(z) := \frac{1}{2i\sin\alpha} \log\left(\frac{1+ze^{i\alpha}}{1+ze^{-i\alpha}}\right) \qquad (z \in \Delta).$$

The function $\mathcal{B}_{\alpha}(z)$ is convex univalent in Δ and maps Δ onto

(1.5)
$$\Omega_{\alpha} := \left\{ w : \frac{\alpha - \pi}{2\sin\alpha} < \operatorname{Re}(w) < \frac{\alpha}{2\sin\alpha} \right\},$$

in other words, the image of Δ is a vertical strip when $\pi/2 \leq \alpha < \pi$. For other α , $\mathcal{B}_{\alpha}(z)$ is convex univalent in Δ and maps Δ onto the convex hull of three points (one of which may be that point at infinity) on the boundary of Ω_{α} . Therefore, in other cases, we obtain a trapezium, or a triangle, see [3]. Also, we have that

(1.6)
$$\mathfrak{B}_{\alpha}(z) = \sum_{n=1}^{\infty} A_n z^n \qquad (z \in \Delta),$$

where

(1.7)
$$A_n = \frac{(-1)^{(n-1)} \left(e^{in\alpha} - e^{-in\alpha}\right)}{2in\sin\alpha} \qquad (n = 1, 2, \ldots)$$

The following lemma will be useful.

Lemma 1.3. (see [9]) Let $q(z) = \sum_{n=1}^{\infty} Q_n z^n$ be analytic and univalent in Δ , and suppose that q(z) maps Δ onto a convex domain. If $p(z) = \sum_{n=1}^{\infty} P_n z^n$ is analytic in Δ and satisfies the following subordination

$$p(z) \prec q(z) \qquad (z \in \Delta),$$

then

$$|P_n| \le |Q_1| \qquad n \ge 1.$$

This paper is organized as follows. In Section 2 we study the class $\mathcal{M}(\alpha)$. We consider the coefficient estimates and Fekete-Szegö inequality. Also, in Section 3 we introduce a certain subclass $\mathcal{M}_{\sigma}(\alpha)$ of bi–univalent functions and we estimate the initial coefficients of functions belonging to $\mathcal{M}_{\sigma}(\alpha)$.

2. Coefficient Estimates

Theorem 2.1. ([10]) Let $\pi/2 \leq \alpha < \pi$. If a function $f \in \mathcal{A}$ of the form (1.1) belongs to the class $\mathcal{M}(\alpha)$, then

$$(2.1) |a_n| \le 1 (n = 2, 3, 4, \ldots)$$

Here, we consider the problem of finding sharp upper bounds for the Fekete-Szegö coefficient functional associated with the k-th root transform for functions in the class $\mathcal{M}(\alpha)$. For a univalent function f(z) of the form (1.1), the k-th root transform is defined by

(2.2)
$$F(z) = [f(z^k)]^{1/k} = z + \sum_{n=1}^{\infty} b_{kn+1} z^{kn+1} \qquad (z \in \Delta).$$

In order to prove next result, we need the following lemma due to Keogh and Merkes [5].

Lemma 2.2. (see [5]) Let the function g(z) given by

 $g(z) = 1 + c_1 z + c_2 z^2 + \cdots,$

be in the class $\mathfrak{P}.$ Then, for any complex number μ

$$|c_2 - \mu c_1^2| \le 2 \max\{1, |2\mu - 1|\}.$$

The result is sharp.

Theorem 2.3. Let $\pi/2 \leq \alpha < \pi$. Suppose also that $f \in \mathcal{M}(\alpha)$ and let F be the k-th root transform of f defined by (2.2). Then, for any complex number μ ,

(2.3)
$$|b_{2k+1} - \mu b_{k+1}^2| \le \frac{1}{2k} \max\left\{1, \left|\frac{2\mu - k - 1 + k\cos\alpha}{2k}\right|\right\}.$$

The result is sharp.

Proof. Since $f \in \mathcal{M}(\alpha)$, from Lemma 1.2 and by definition of subordination, there exists a function $w \in \mathcal{B}$ such that

(2.4)
$$zf'(z)/f(z) = 1 + \mathcal{B}_{\alpha}(w(z)).$$

We define

(2.5)
$$p(z) := \frac{1+w(z)}{1-w(z)} = 1 + p_1 z + p_2 z^2 + \cdots,$$

and note that $p \in \mathcal{P}$. Relationships (1.6) and (2.5) give us

(2.6)
$$1 + \mathcal{B}_{\alpha}(w(z)) = 1 + \frac{1}{2}A_1p_1z + \left(\frac{1}{4}A_2p_1^2 + \frac{1}{2}A_1\left(p_2 - \frac{1}{2}p_1^2\right)\right)z^2 + \cdots,$$

where $A_1 = 1$ and $A_2 = -\cos \alpha$. If we equate the coefficients of z and z^2 on both sides of (2.4), then we get

(2.7)
$$a_2 = \frac{1}{2}p_1,$$

and

(2.8)
$$a_3 = \frac{1}{8}(1 - \cos \alpha)p_1^2 + \frac{1}{4}\left(p_2 - \frac{1}{2}p_1^2\right).$$

For each f given by (1.1) and with a simple calculation we have

(2.9)
$$F(z) = [f(z^{1/k})]^{1/k} = z + \frac{1}{k}a_2z^{k+1} + \left(\frac{1}{k}a_3 - \frac{1}{2}\frac{k-1}{k^2}a_2^2\right)z^{2k+1} + \cdots$$

Moreover by (2.2) and (2.9), we obtain

(2.10)
$$b_{k+1} = \frac{1}{k}a_2$$
 and $b_{2k+1} = \frac{1}{k}a_3 - \frac{1}{2}\frac{k-1}{k^2}a_2^2$.

By inserting (2.7) and (2.8) into (2.10), we get

$$b_{k+1} = \frac{p_1}{2k},$$

and

$$b_{2k+1} = \frac{1}{8k} \left(1 - \cos \alpha - \frac{k-1}{k} \right) p_1^2 + \frac{1}{4k} \left(p_2 - \frac{1}{2} p_1^2 \right).$$

Therefore,

(2.11)
$$b_{2k+1} - \mu b_{k+1}^2 = \frac{1}{4k} \left[p_2 - \frac{2\mu + k - 1 + k \cos \alpha}{2k} p_1^2 \right].$$

Applying Lemma 2.2 in (2.11) with

$$\mu' = \frac{2\mu + k - 1 + k\cos\alpha}{2k},$$

gives the inequality (2.3). For the sharpness it is sufficient to consider the k-th root transforms of the function

(2.12)
$$f(z) = z \exp\left(\int_0^z \frac{\mathcal{B}_{\alpha}(w(t))}{t} \mathrm{d}t\right).$$

It is clear that $f \in \mathcal{M}(\alpha)$. If we take in (2.12) w(z) = z, then from (2.5) we obtain $p_1 = p_2 = 2$ hence from (2.11) we get

$$|b_{2k+1} - \mu b_{k+1}^2| = \frac{1}{2k} \left| \frac{2\mu - k - 1 + k \cos \alpha}{2k} \right|.$$

If we take in (2.12) $w(z) = z^2$, then from (2.5) we obtain $p_1 = 0$ while $p_2 = 2$ hence from (2.11) we get for this case

$$\left|b_{2k+1} - \mu b_{k+1}^2\right| = \frac{1}{2k}.$$

It shows the sharpness of (2.3) and ends the proof.

The problem of finding sharp upper bound for the coefficient functional $|a_3 - \mu a_2^2|$ for different subclasses of the class A is known as the Fekete-Szegö problem. Putting k = 1 in the Theorem 2.3 gives us:

Corollary 2.4. Let $\alpha \in [\pi/2, \pi)$. Suppose also that $f \in \mathcal{M}(\alpha)$. Then, for any complex number μ ,

(2.13)
$$|a_3 - \mu a_2^2| \le \frac{1}{2} \max\left\{1, \left|\frac{2\mu - 2 + \cos\alpha}{2}\right|\right\}.$$

The result is sharp.

Putting $\alpha = \pi/2$, in the Corollary 2.4, we get:

Corollary 2.5. Assume that the function f given by (1.1) satisfies in the following two-sided inequality:

$$1 - \frac{\pi}{4} < \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 1 + \frac{\pi}{4} \qquad z \in \Delta,$$

then

(2.14)
$$|a_3 - \mu a_2^2| \le \frac{1}{2} \max\{1, |\mu - 1|\} \quad (\mu \in \mathbb{C}).$$

If we take $\alpha \to \pi^-$ in the Corollary 2.4, then we have:

Corollary 2.6. Assume that the function f given by (1.1) satisfies in the following inequality:

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 1 - \frac{\pi}{4} \qquad z \in \Delta,$$

then

(2.15)
$$|a_3 - \mu a_2^2| \le \frac{1}{2} \max\{1, |(2\mu - 3)/2|\} \quad (\mu \in \mathbb{C}).$$

Corollary 2.7. Let the function f, given by (1.1), be in the class $\mathcal{M}(\alpha)$. Also let the function $f^{-1}(w) = w + \sum_{n=2}^{\infty} b_n w^n$ be the inverse of f. Then

(2.16)
$$|b_2| \le 1$$

and

(2.17)
$$|b_3| \le \frac{1}{2} |6 - \cos \alpha| \qquad \pi/2 \le \alpha < \pi.$$

We remark that every function $f\in \mathbb{S}$ has an inverse $f^{-1},$ defined by $f^{-1}(f(z))=z~(z\in \Delta)$ and

$$f(f^{-1}(w)) = w$$
 $(|w| < r_0; r_0 \ge 1/4),$

where

(2.18)
$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

Proof Comparing (2.18) with $f^{-1}(w) = w + \sum_{n=2}^{\infty} b_n w^n$, gives us $b_2 = -a_2$ and $b_3 = 2a_2^2 - a_3$.

Applying Theorem 2.1 we get

$$|b_2| = |a_2| \le 1.$$

518

The second inequality (2.17) follows by taking $\mu = -2$ in the Corollary 2.4.

3. Bi–Univalent Functions

First, we recall that a function $f \in \mathcal{A}$ is said to be bi–univalent in Δ if f univalent in Δ and f^{-1} has an univalent extension from $|w| < r_0 < 1$ to Δ . We denote by σ the class of bi–univalent functions in the unit disk Δ .

In 1967 Lewin [6] introduced the class σ of bi-univalent functions. He obtained the bound for the second coefficient. Recently, several authors have subsequently studied similar problems in this direction (see [2, 7]). For example, Brannan and Taha [1] considered certain subclasses of bi–univalent functions, similar to the familiar subclasses of univalent functions including of strongly starlike, starlike and convex functions. They introduced bi-starlike functions and bi-convex functions and obtained estimates on the initial coefficients.

In this section we introduce by $\mathcal{M}_{\sigma}(\alpha)$ a certain subclass of bi–starlike functions as follows. Also, we obtain the bound for the initial coefficients.

Definition 3.1. A function $f \in \sigma$ is said to be in the class $\mathcal{M}_{\sigma}(\alpha)$, if the following inequalities hold:

(3.1)
$$1 + \frac{\alpha - \pi}{2\sin\alpha} < \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 1 + \frac{\alpha}{2\sin\alpha} \qquad (z \in \Delta).$$

and

(3.2)
$$1 + \frac{\alpha - \pi}{2\sin\alpha} < \operatorname{Re}\left\{\frac{wg'(w)}{g(w)}\right\} < 1 + \frac{\alpha}{2\sin\alpha} \qquad (w \in \Delta),$$

where $g(w) = f^{-1}(w)$ and $\pi/2 \le \alpha < \pi$.

For functions in the class $\mathcal{M}_{\sigma}(\alpha)$, the following result is obtained.

Theorem 3.2. Let the function $f \in A$ of the form (1.1) belongs to the class $\mathcal{M}_{\sigma}(\alpha)$. Then

(3.3)
$$|a_2| \le \frac{1}{\sqrt{2 + \cos \alpha}} \qquad \pi/2 \le \alpha < \pi,$$

and

$$(3.4) |a_3| \le 2 + \cos \alpha \pi/2 \le \alpha < \pi.$$

Proof. Let $f \in \mathcal{M}_{\sigma}(\alpha)$ and $g = f^{-1}$. Then using Lemma 1.2, there are analytic functions $u, v \in \mathcal{B}$, satisfying

(3.5)
$$zf'(z)/f(z) = 1 + \mathcal{B}_{\alpha}(u(z))$$
 and $wg'(w)/g(w) = 1 + \mathcal{B}_{\alpha}(v(z)),$

where $\mathcal{B}_{\alpha}(.)$ defined by (1.4). Define the functions k and l by

$$k(z) = \frac{1+u(z)}{1-u(z)} = 1+k_1z+k_2z^2+\cdots$$
 and $l(z) = \frac{1+v(z)}{1-v(z)} = 1+l_1z+l_2z^2+\cdots$,

or, equivalently,

(3.6)
$$u(z) = \frac{k(z) - 1}{k(z) + 1} = \frac{1}{2} \left(k_1 z + \left(k_2 - \frac{k_1^2}{2} \right) z^2 + \cdots \right),$$

and

(3.7)
$$v(z) = \frac{l(z) - 1}{l(z) + 1} = \frac{1}{2} \left(l_1 z + \left(l_2 - \frac{l_1^2}{2} \right) z^2 + \cdots \right).$$

It is clear that the functions k(z) and l(z) belong to class \mathcal{P} and we have $|k_i| \leq 2$ and $|l_i| \leq 2$ (i = 1, 2, ...) (see [8]). However, clearly

(3.8)
$$\frac{zf'(z)}{f(z)} = 1 + \mathcal{B}_{\alpha}\left(\frac{k(z)-1}{k(z)+1}\right) \text{ and } \frac{wg'(w)}{g(w)} = 1 + \mathcal{B}_{\alpha}\left(\frac{l(z)-1}{l(z)+1}\right).$$

From (1.6), (3.6) and (3.7), we have

$$(3.9) \ 1 + \mathcal{B}_{\alpha}\left(\frac{k(z)-1}{k(z)+1}\right) = 1 + \frac{1}{2}A_1k_1z + \left(\frac{1}{2}A_1\left(k_2 - \frac{k_1^2}{2}\right) + \frac{1}{4}A_2k_1^2\right)z^2 + \cdots,$$

 $\quad \text{and} \quad$

$$(3.10) \quad 1 + \mathcal{B}_{\alpha}\left(\frac{l(z) - 1}{l(z) + 1}\right) = 1 + \frac{1}{2}A_{1}l_{1}z + \left(\frac{1}{2}A_{1}\left(l_{2} - \frac{l_{1}^{2}}{2}\right) + \frac{1}{4}A_{2}l_{1}^{2}\right)z^{2} + \cdots,$$

where $A_1 = 1$ and $A_2 = -\cos \alpha$, are given by (1.7). By suitably comparing coefficients of (3.5), we get

(3.11)
$$a_2 = \frac{1}{2}A_1k_1,$$

(3.12)
$$2a_3 - a_2^2 = \frac{1}{2}A_1\left(k_2 - \frac{k_1^2}{2}\right) + \frac{1}{4}A_2k_1^2,$$

$$(3.13) -a_2 = \frac{1}{2}A_1l_1,$$

and

(3.14)
$$3a_2^2 - 2a_3 = \frac{1}{2}A_1\left(l_2 - \frac{l_1^2}{2}\right) + \frac{1}{4}A_2l_1^2.$$

From (3.11) and (3.13), we get

$$(3.15) k_1 = -l_1$$

Also, from (3.12)-(3.15), we find that (3.16)

$$a_2^2 = \frac{A_1^3(k_2 + l_2)}{4(A_1^2 + A_1 - A_2)} = \frac{k_2 + l_2}{4(2 + \cos \alpha)} \quad \text{(with } A_1 = 1 \text{ and } A_2 = -\cos \alpha\text{)}.$$

Therefore, we have

$$|a_2^2| \le \frac{|k_2| + |l_2|}{4(2 + \cos \alpha)} \le \frac{1}{2 + \cos \alpha}.$$

This gives the bound on $|a_2|$ as asserted in (3.3). Now, further computations from (3.12) and (3.14)-(3.16) lead to

$$a_3 = \frac{1}{8} \left(A_1(3k_2 + l_2) + 2k_1^2(A_2 - A_1) \right) = \frac{1}{8} \left(3k_2 + l_2 + 2k_1^2(-\cos\alpha - 1) \right).$$

Since $|k_i| \leq 2$ and $|l_i| \leq 2$, we have

 $|a_3| \le 1 + |1 + \cos \alpha|.$

Therefore, the proof of Theorem 3.2 is completed.

Corollary 3.3. Let the function f be in the class $\mathcal{M}_{\sigma}(\pi/2)$. Then

$$|a_2| \le \sqrt{2/2} \approx 0.7071068\dots$$

and

$$|a_3| \le 2.$$

Also, if we take $\alpha \to \pi^-$, in Theorem 3.2 we get

$$|a_i| \le 1$$
 $(i = 2, 3).$

References

- D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., **31(2)**(1986), 70–77.
- [2] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22(1970), 476–485.
- [3] M. Dorff, Convolutions of planar harmonic convex mappings, Complex Variables, Theory and Appl., 45(3)(2001), 263–271.
- [4] R. Kargar, A. Ebadian and J. Sokół, Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory, 11(2017), 1639–1649.

- [5] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8–12.
- [6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
- [7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32(1969), 100–112.
- [8] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
- [9] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48(1943), 48–82.
- [10] Y. Sun, Z.-G. Wang, A. Rasila and J. Sokół, On a subclass of starlike functions associated with a vertical strip domain, J. Ineq. Appl., (2019) 2019: 35.