On Coefficients of a Certain Subclass of Starlike and Bistarlike Functions

Hesam Mahzoon
Department of Mathematics, Islamic Azad University, West Tehran Branch, Tehran, Iran
e-mail: mahzoon_hesam@yahoo.com
Janusz Sokó́*
College of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland
e-mail: jsokol@ur.edu.pl

Abstract. In this paper we investigate a subclass $\mathcal{M}(\alpha)$ of the class of starlike functions in the unit disk $|z|<1 . \mathcal{N}(\alpha), \pi / 2 \leq \alpha<\pi$, is the set of all analytic functions f in the unit disk $|z|<1$ with the normalization $f(0)=f^{\prime}(0)-1=0$ that satisfy the condition

$$
1+\frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<1+\frac{\alpha}{2 \sin \alpha} \quad(z \in \Delta) .
$$

The class $\mathcal{M}(\alpha)$ was introduced by Kargar et al. [Complex Anal. Oper. Theory 11: 1639-1649, 2017]. In this paper some basic geometric properties of the class $\mathcal{M}(\alpha)$ are investigated. Among others things, coefficients estimates and bound are given for the Fekete-Szegö functional associated with the k-th root transform $\left[f\left(z^{k}\right)\right]^{1 / k}$. Also a certain subclass of bi-starlike functions is introduced and the bounds for the initial coefficients are obtained.

1. Introduction

Let \mathcal{A} be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic and normalized by $f(0)=f^{\prime}(0)-1=0$ in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. The subclass of \mathcal{A} of all univalent functions f in Δ is denoted

[^0]by \mathcal{S}. We denote by \mathcal{P} the well-known class of analytic functions p with $p(0)=1$ and $\operatorname{Re}(p(z))>0, z \in \Delta$. We also denote by \mathcal{B} the class of analytic functions $w(z)$ in Δ with $w(0)=0$ and $|w(z)|<1, z \in \Delta$. If f and g are two functions in \mathcal{A}, then we say that f is subordinate to g, written $f(z) \prec g(z)$, if there exists a function $w \in \mathcal{B}$ such that $f(z)=g(w(z))$ for all $z \in \Delta$. As a special case, if the function g is univalent in Δ, then we have the following equivalence:
$$
f(z) \prec g(z) \Leftrightarrow(f(0)=g(0) \quad \text { and } \quad f(\Delta) \subset g(\Delta)) .
$$

A function $f \in \mathcal{S}$ is starlike (with respect to 0) if $t w \in f(\Delta)$ whenever $w \in f(\Delta)$ and $t \in[0,1]$. The class of starlike functions is denoted by \mathcal{S}^{*}. We say that $f \in \mathcal{S}^{*}(\gamma)$ $(0 \leq \gamma<1)$ if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\gamma \quad(z \in \Delta)
$$

The equality $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$ is well known. Recently Kargar et al. (see [4]) introduced a certain subclass of starlike functions as follows.

Definition 1.1. Let $\pi / 2 \leq \alpha<\pi$. Then the function $f \in \mathcal{A}$ belongs to the class $\mathcal{M}(\alpha)$ if f satisfies

$$
\begin{equation*}
1+\frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<1+\frac{\alpha}{2 \sin \alpha} \quad(z \in \Delta) \tag{1.2}
\end{equation*}
$$

Consider the function ϕ as follows

$$
\phi(\alpha):=1+\frac{\alpha-\pi}{2 \sin \alpha} \quad(\pi / 2 \leq \alpha<\pi)
$$

It is clear that $\phi(\pi / 2)=1-\pi / 4 \approx 0.2146$ and

$$
\lim _{\alpha \rightarrow \pi^{-}} \phi(\alpha)=\frac{1}{2}
$$

Thus, the class $\mathcal{M}(\alpha)$ is a subclass of the class $f \in \mathcal{S}^{*}(\phi(\pi / 2))$ of starlike functions of order $\phi(\pi / 2)=1-\pi / 4$.

By the subordination principle we have the following lemma.
Lemma 1.2. (see [4]) Let $f(z) \in \mathcal{A}$ and $\pi / 2 \leq \alpha<\pi$. Then $f \in \mathcal{M}(\alpha)$ if and only if

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \mathcal{B}_{\alpha}(z) \quad(z \in \Delta) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{B}_{\alpha}(z):=\frac{1}{2 i \sin \alpha} \log \left(\frac{1+z e^{i \alpha}}{1+z e^{-i \alpha}}\right) \quad(z \in \Delta) \tag{1.4}
\end{equation*}
$$

The function $\mathcal{B}_{\alpha}(z)$ is convex univalent in Δ and maps Δ onto

$$
\begin{equation*}
\Omega_{\alpha}:=\left\{w: \frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}(w)<\frac{\alpha}{2 \sin \alpha}\right\}, \tag{1.5}
\end{equation*}
$$

in other words, the image of Δ is a vertical strip when $\pi / 2 \leq \alpha<\pi$. For other α, $\mathcal{B}_{\alpha}(z)$ is convex univalent in Δ and maps Δ onto the convex hull of three points (one of which may be that point at infinity) on the boundary of Ω_{α}. Therefore, in other cases, we obtain a trapezium, or a triangle, see [3]. Also, we have that

$$
\begin{equation*}
\mathcal{B}_{\alpha}(z)=\sum_{n=1}^{\infty} A_{n} z^{n} \quad(z \in \Delta) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=\frac{(-1)^{(n-1)}\left(e^{i n \alpha}-e^{-i n \alpha}\right)}{2 i n \sin \alpha} \quad(n=1,2, \ldots) \tag{1.7}
\end{equation*}
$$

The following lemma will be useful.
Lemma 1.3. (see [9]) Let $q(z)=\sum_{n=1}^{\infty} Q_{n} z^{n}$ be analytic and univalent in Δ, and suppose that $q(z)$ maps Δ onto a convex domain. If $p(z)=\sum_{n=1}^{\infty} P_{n} z^{n}$ is analytic in Δ and satisfies the following subordination

$$
p(z) \prec q(z) \quad(z \in \Delta)
$$

then

$$
\left|P_{n}\right| \leq\left|Q_{1}\right| \quad n \geq 1
$$

This paper is organized as follows. In Section 2 we study the class $\mathcal{M}(\alpha)$. We consider the coefficient estimates and Fekete-Szegö inequality. Also, in Section 3 we introduce a certain subclass $\mathcal{M}_{\sigma}(\alpha)$ of bi-univalent functions and we estimate the initial coefficients of functions belonging to $\mathcal{M}_{\sigma}(\alpha)$.

2. Coefficient Estimates

Theorem 2.1. ([10]) Let $\pi / 2 \leq \alpha<\pi$. If a function $f \in \mathcal{A}$ of the form (1.1) belongs to the class $\mathcal{M}(\alpha)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq 1 \quad(n=2,3,4, \ldots) \tag{2.1}
\end{equation*}
$$

Here, we consider the problem of finding sharp upper bounds for the FeketeSzegö coefficient functional associated with the k-th root transform for functions in the class $\mathcal{M}(\alpha)$. For a univalent function $f(z)$ of the form (1.1), the k-th root transform is defined by

$$
\begin{equation*}
F(z)=\left[f\left(z^{k}\right)\right]^{1 / k}=z+\sum_{n=1}^{\infty} b_{k n+1} z^{k n+1} \quad(z \in \Delta) \tag{2.2}
\end{equation*}
$$

In order to prove next result, we need the following lemma due to Keogh and Merkes [5].

Lemma 2.2. (see [5]) Let the function $g(z)$ given by

$$
g(z)=1+c_{1} z+c_{2} z^{2}+\cdots,
$$

be in the class \mathcal{P}. Then, for any complex number μ

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

The result is sharp.
Theorem 2.3. Let $\pi / 2 \leq \alpha<\pi$. Suppose also that $f \in \mathcal{M}(\alpha)$ and let F be the k-th root transform of f defined by (2.2). Then, for any complex number μ,

$$
\begin{equation*}
\left|b_{2 k+1}-\mu b_{k+1}^{2}\right| \leq \frac{1}{2 k} \max \left\{1,\left|\frac{2 \mu-k-1+k \cos \alpha}{2 k}\right|\right\} . \tag{2.3}
\end{equation*}
$$

The result is sharp.
Proof. Since $f \in \mathcal{M}(\alpha)$, from Lemma 1.2 and by definition of subordination, there exists a function $w \in \mathcal{B}$ such that

$$
\begin{equation*}
z f^{\prime}(z) / f(z)=1+\mathcal{B}_{\alpha}(w(z)) \tag{2.4}
\end{equation*}
$$

We define

$$
\begin{equation*}
p(z):=\frac{1+w(z)}{1-w(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{2.5}
\end{equation*}
$$

and note that $p \in \mathcal{P}$. Relationships (1.6) and (2.5) give us

$$
\begin{equation*}
1+\mathcal{B}_{\alpha}(w(z))=1+\frac{1}{2} A_{1} p_{1} z+\left(\frac{1}{4} A_{2} p_{1}^{2}+\frac{1}{2} A_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)\right) z^{2}+\cdots \tag{2.6}
\end{equation*}
$$

where $A_{1}=1$ and $A_{2}=-\cos \alpha$. If we equate the coefficients of z and z^{2} on both sides of (2.4), then we get

$$
\begin{equation*}
a_{2}=\frac{1}{2} p_{1}, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{1}{8}(1-\cos \alpha) p_{1}^{2}+\frac{1}{4}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) . \tag{2.8}
\end{equation*}
$$

For each f given by (1.1) and with a simple calculation we have

$$
\begin{equation*}
F(z)=\left[f\left(z^{1 / k}\right)\right]^{1 / k}=z+\frac{1}{k} a_{2} z^{k+1}+\left(\frac{1}{k} a_{3}-\frac{1}{2} \frac{k-1}{k^{2}} a_{2}^{2}\right) z^{2 k+1}+\cdots . \tag{2.9}
\end{equation*}
$$

Moreover by (2.2) and (2.9), we obtain

$$
\begin{equation*}
b_{k+1}=\frac{1}{k} a_{2} \quad \text { and } \quad b_{2 k+1}=\frac{1}{k} a_{3}-\frac{1}{2} \frac{k-1}{k^{2}} a_{2}^{2} . \tag{2.10}
\end{equation*}
$$

By inserting (2.7) and (2.8) into (2.10), we get

$$
b_{k+1}=\frac{p_{1}}{2 k},
$$

and

$$
b_{2 k+1}=\frac{1}{8 k}\left(1-\cos \alpha-\frac{k-1}{k}\right) p_{1}^{2}+\frac{1}{4 k}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right) .
$$

Therefore,

$$
\begin{equation*}
b_{2 k+1}-\mu b_{k+1}^{2}=\frac{1}{4 k}\left[p_{2}-\frac{2 \mu+k-1+k \cos \alpha}{2 k} p_{1}^{2}\right] . \tag{2.11}
\end{equation*}
$$

Applying Lemma 2.2 in (2.11) with

$$
\mu^{\prime}=\frac{2 \mu+k-1+k \cos \alpha}{2 k},
$$

gives the inequality (2.3). For the sharpness it is sufficient to consider the k-th root transforms of the function

$$
\begin{equation*}
f(z)=z \exp \left(\int_{0}^{z} \frac{\mathcal{B}_{\alpha}(w(t))}{t} \mathrm{~d} t\right) . \tag{2.12}
\end{equation*}
$$

It is clear that $f \in \mathcal{M}(\alpha)$. If we take in (2.12) $w(z)=z$, then from (2.5) we obtain $p_{1}=p_{2}=2$ hence from (2.11) we get

$$
\left|b_{2 k+1}-\mu b_{k+1}^{2}\right|=\frac{1}{2 k}\left|\frac{2 \mu-k-1+k \cos \alpha}{2 k}\right|
$$

If we take in (2.12) $w(z)=z^{2}$, then from (2.5) we obtain $p_{1}=0$ while $p_{2}=2$ hence from (2.11) we get for this case

$$
\left|b_{2 k+1}-\mu b_{k+1}^{2}\right|=\frac{1}{2 k} .
$$

It shows the sharpness of (2.3) and ends the proof.
The problem of finding sharp upper bound for the coefficient functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for different subclasses of the class \mathcal{A} is known as the Fekete-Szegö problem. Putting $k=1$ in the Theorem 2.3 gives us:

Corollary 2.4. Let $\alpha \in[\pi / 2, \pi)$. Suppose also that $f \in \mathcal{M}(\alpha)$. Then, for any complex number μ,

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2} \max \left\{1,\left|\frac{2 \mu-2+\cos \alpha}{2}\right|\right\} . \tag{2.13}
\end{equation*}
$$

The result is sharp.

Putting $\alpha=\pi / 2$, in the Corollary 2.4, we get:
Corollary 2.5. Assume that the function f given by (1.1) satisfies in the following two-sided inequality:

$$
1-\frac{\pi}{4}<\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<1+\frac{\pi}{4} \quad z \in \Delta
$$

then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2} \max \{1,|\mu-1|\} \quad(\mu \in \mathbb{C}) \tag{2.14}
\end{equation*}
$$

If we take $\alpha \rightarrow \pi^{-}$in the Corollary 2.4, then we have:
Corollary 2.6. Assume that the function f given by (1.1) satisfies in the following inequality:

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>1-\frac{\pi}{4} \quad z \in \Delta
$$

then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2} \max \{1,|(2 \mu-3) / 2|\} \quad(\mu \in \mathbb{C}) \tag{2.15}
\end{equation*}
$$

Corollary 2.7. Let the function f, given by (1.1), be in the class $\mathcal{M}(\alpha)$. Also let the function $f^{-1}(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n}$ be the inverse of f. Then

$$
\begin{equation*}
\left|b_{2}\right| \leq 1 \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{3}\right| \leq \frac{1}{2}|6-\cos \alpha| \quad \pi / 2 \leq \alpha<\pi \tag{2.17}
\end{equation*}
$$

We remark that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by $f^{-1}(f(z))=$ $z(z \in \Delta)$ and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0} ; \quad r_{0} \geq 1 / 4\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2.18}
\end{equation*}
$$

Proof Comparing (2.18) with $f^{-1}(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n}$, gives us

$$
b_{2}=-a_{2} \quad \text { and } \quad b_{3}=2 a_{2}^{2}-a_{3} .
$$

Applying Theorem 2.1 we get

$$
\left|b_{2}\right|=\left|a_{2}\right| \leq 1
$$

The second inequality (2.17) follows by taking $\mu=-2$ in the Corollary 2.4.

3. Bi-Univalent Functions

First, we recall that a function $f \in \mathcal{A}$ is said to be bi-univalent in Δ if f univalent in Δ and f^{-1} has an univalent extension from $|w|<r_{0}<1$ to Δ. We denote by σ the class of bi-univalent functions in the unit disk Δ.

In 1967 Lewin [6] introduced the class σ of bi-univalent functions. He obtained the bound for the second coefficient. Recently, several authors have subsequently studied similar problems in this direction (see [2, 7]). For example, Brannan and Taha [1] considered certain subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions including of strongly starlike, starlike and convex functions. They introduced bi-starlike functions and bi-convex functions and obtained estimates on the initial coefficients.

In this section we introduce by $\mathcal{M}_{\sigma}(\alpha)$ a certain subclass of bi-starlike functions as follows. Also, we obtain the bound for the initial coefficients.

Definition 3.1. A function $f \in \sigma$ is said to be in the class $\mathcal{M}_{\sigma}(\alpha)$, if the following inequalities hold:

$$
\begin{equation*}
1+\frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<1+\frac{\alpha}{2 \sin \alpha} \quad(z \in \Delta) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{\alpha-\pi}{2 \sin \alpha}<\operatorname{Re}\left\{\frac{w g^{\prime}(w)}{g(w)}\right\}<1+\frac{\alpha}{2 \sin \alpha} \quad(w \in \Delta) \tag{3.2}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$ and $\pi / 2 \leq \alpha<\pi$.
For functions in the class $\mathcal{M}_{\sigma}(\alpha)$, the following result is obtained.
Theorem 3.2. Let the function $f \in \mathcal{A}$ of the form (1.1) belongs to the class $\mathcal{M}_{\sigma}(\alpha)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{1}{\sqrt{2+\cos \alpha}} \quad \pi / 2 \leq \alpha<\pi \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq 2+\cos \alpha \quad \pi / 2 \leq \alpha<\pi . \tag{3.4}
\end{equation*}
$$

Proof. Let $f \in \mathcal{M}_{\sigma}(\alpha)$ and $g=f^{-1}$. Then using Lemma 1.2, there are analytic functions $u, v \in \mathcal{B}$, satisfying

$$
\begin{equation*}
z f^{\prime}(z) / f(z)=1+\mathcal{B}_{\alpha}(u(z)) \quad \text { and } \quad w g^{\prime}(w) / g(w)=1+\mathcal{B}_{\alpha}(v(z)) \tag{3.5}
\end{equation*}
$$

where $\mathcal{B}_{\alpha}($.$) defined by (1.4). Define the functions k$ and l by
$k(z)=\frac{1+u(z)}{1-u(z)}=1+k_{1} z+k_{2} z^{2}+\cdots \quad$ and $\quad l(z)=\frac{1+v(z)}{1-v(z)}=1+l_{1} z+l_{2} z^{2}+\cdots$,
or, equivalently,

$$
\begin{equation*}
u(z)=\frac{k(z)-1}{k(z)+1}=\frac{1}{2}\left(k_{1} z+\left(k_{2}-\frac{k_{1}^{2}}{2}\right) z^{2}+\cdots\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{l(z)-1}{l(z)+1}=\frac{1}{2}\left(l_{1} z+\left(l_{2}-\frac{l_{1}^{2}}{2}\right) z^{2}+\cdots\right) . \tag{3.7}
\end{equation*}
$$

It is clear that the functions $k(z)$ and $l(z)$ belong to class \mathcal{P} and we have $\left|k_{i}\right| \leq 2$ and $\left|l_{i}\right| \leq 2(i=1,2, \ldots)$ (see [8]). However, clearly

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+\mathcal{B}_{\alpha}\left(\frac{k(z)-1}{k(z)+1}\right) \quad \text { and } \quad \frac{w g^{\prime}(w)}{g(w)}=1+\mathcal{B}_{\alpha}\left(\frac{l(z)-1}{l(z)+1}\right) \tag{3.8}
\end{equation*}
$$

From (1.6), (3.6) and (3.7), we have
(3.9) $1+\mathcal{B}_{\alpha}\left(\frac{k(z)-1}{k(z)+1}\right)=1+\frac{1}{2} A_{1} k_{1} z+\left(\frac{1}{2} A_{1}\left(k_{2}-\frac{k_{1}^{2}}{2}\right)+\frac{1}{4} A_{2} k_{1}^{2}\right) z^{2}+\cdots$,
and
(3.10) $1+\mathcal{B}_{\alpha}\left(\frac{l(z)-1}{l(z)+1}\right)=1+\frac{1}{2} A_{1} l_{1} z+\left(\frac{1}{2} A_{1}\left(l_{2}-\frac{l_{1}^{2}}{2}\right)+\frac{1}{4} A_{2} l_{1}^{2}\right) z^{2}+\cdots$,
where $A_{1}=1$ and $A_{2}=-\cos \alpha$, are given by (1.7). By suitably comparing coefficients of (3.5), we get

$$
\begin{equation*}
a_{2}=\frac{1}{2} A_{1} k_{1}, \tag{3.11}
\end{equation*}
$$

$$
\begin{gather*}
2 a_{3}-a_{2}^{2}=\frac{1}{2} A_{1}\left(k_{2}-\frac{k_{1}^{2}}{2}\right)+\frac{1}{4} A_{2} k_{1}^{2} \tag{3.12}\\
-a_{2}=\frac{1}{2} A_{1} l_{1}, \tag{3.13}
\end{gather*}
$$

and

$$
\begin{equation*}
3 a_{2}^{2}-2 a_{3}=\frac{1}{2} A_{1}\left(l_{2}-\frac{l_{1}^{2}}{2}\right)+\frac{1}{4} A_{2} l_{1}^{2} \tag{3.14}
\end{equation*}
$$

From (3.11) and (3.13), we get

$$
\begin{equation*}
k_{1}=-l_{1} \tag{3.15}
\end{equation*}
$$

Also, from (3.12)-(3.15), we find that

$$
\begin{equation*}
a_{2}^{2}=\frac{A_{1}^{3}\left(k_{2}+l_{2}\right)}{4\left(A_{1}^{2}+A_{1}-A_{2}\right)}=\frac{k_{2}+l_{2}}{4(2+\cos \alpha)} \quad\left(\text { with } \mathrm{A}_{1}=1 \quad \text { and } \quad \mathrm{A}_{2}=-\cos \alpha\right) \tag{3.16}
\end{equation*}
$$

Therefore, we have

$$
\left|a_{2}^{2}\right| \leq \frac{\left|k_{2}\right|+\left|l_{2}\right|}{4(2+\cos \alpha)} \leq \frac{1}{2+\cos \alpha} .
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (3.3). Now, further computations from (3.12) and (3.14)-(3.16) lead to

$$
a_{3}=\frac{1}{8}\left(A_{1}\left(3 k_{2}+l_{2}\right)+2 k_{1}^{2}\left(A_{2}-A_{1}\right)\right)=\frac{1}{8}\left(3 k_{2}+l_{2}+2 k_{1}^{2}(-\cos \alpha-1)\right) .
$$

Since $\left|k_{i}\right| \leq 2$ and $\left|l_{i}\right| \leq 2$, we have

$$
\left|a_{3}\right| \leq 1+|1+\cos \alpha| .
$$

Therefore, the proof of Theorem 3.2 is completed.

Corollary 3.3. Let the function f be in the class $\mathcal{M}_{\sigma}(\pi / 2)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2} / 2 \approx 0.7071068 \ldots,
$$

and

$$
\left|a_{3}\right| \leq 2
$$

Also, if we take $\alpha \rightarrow \pi^{-}$, in Theorem 3.2 we get

$$
\left|a_{i}\right| \leq 1 \quad(i=2,3)
$$

References

[1] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
[2] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22(1970), 476-485.
[3] M. Dorff, Convolutions of planar harmonic convex mappings, Complex Variables, Theory and Appl., 45(3)(2001), 263-271.
[4] R. Kargar, A. Ebadian and J. Sokół, Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory, 11(2017), 1639-1649.
[5] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
[6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32(1969), 100-112.
[8] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
[9] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48(1943), 48-82.
[10] Y. Sun, Z.-G. Wang, A. Rasila and J. Sokół, On a subclass of starlike functions associated with a vertical strip domain, J. Ineq. Appl., (2019) 2019: 35.

[^0]: * Corresponding Author.

 Received June 6, 2019; revised June 22, 2020; accepted July 2, 2020.
 2020 Mathematics Subject Classification: 30C45.
 Key words and phrases: analytic functions, starlike and bi-starlike functions, subordination, Fekete-Szegö inequality.

