• Title/Summary/Keyword: ZCS(zero-current switching)

Search Result 173, Processing Time 0.028 seconds

New Family of Zero-Current-Switching (ZCS) PWM Converters (새로운 영전류 스위칭 PWM 컨버터)

  • Choi, Hang-Seok;Moon, S.J.;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.946-949
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of dc to dc PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of dc to dc PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype boost converter operating at 40kHz.

  • PDF

A High Power Factor and High Efficiency Three Phase Boost Converter using auxiliary Partial Resonant circuit (보조 부분 공진 회로를 이용한 고역률 고효율 삼상 부스트 컨버터)

  • Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo;Kim, Young-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.212-218
    • /
    • 1999
  • A new partial resonant three phase boost converter with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the swithch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new auxiliary partial resonant boost converter achieves zero-voltage switching(ZVS) or zero-current switching(ZCS) for all switch devices without increasing their voltage and current stresses.

  • PDF

Elimination of harmonics in three-Phase PWM inverter using auxiliary partial resonant circuit (보조부분 공진 회로를 이용한 삼상 PWM 인버터의 고조파 제거)

  • Suh, Ki-Young;Lee, Hyun-Woo;Kim, Young-Mun;Mun, Sang-Pil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.137-140
    • /
    • 1998
  • A new SPWM inverter using three-phase boost converter by auxiliary partial resonant with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the switch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new Partial resonant boost converter achieves zero-voltage switching (ZVS) or zero-current switching (ZCS) for all switch devices without increasing their voltage and current stresses. This paper introduces elimination of low-order harmonics compared with conventional SPWM inverter and SPWM inverter using three-phase boost converter by auxiliary Partial resonant.

  • PDF

A Study on the BUCK ZC-ZVS Converter with Reduced Conduction Losses (도통손실을 감소시킨 강압형 영전류-영전압 컨버터에 관한 연구)

  • Lee, Yo-Seop;Lee, Won-Seok;Lee, Seong-Baek
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.686-691
    • /
    • 1999
  • In a switching power supply, the high frequency switching makes the passive components small, but the losses and the stresses of switches are increased by the switching frequency. Therefore, zero crossing technology using resonant is used to improve defect in high switching. In generally, zero crossing switching consists of Zero Current Switching(ZCS) and Zero Voltage Switching(ZVS). This paper proposes A Buck ZC-ZVS Converter with Reduced Conduction Losses. Comparing with a conventional Buck ZC-ZVS Converter, the proposed converter operates with the smaller rated power. This is achieved by changing the auxiliary switch position, which reduces its rating power. Simulation results using Pspice program about test circuit with rated 160W(30V, 5.3A) at 30kHz and experiment result under same condition were described in the paper.

  • PDF

Novel ZCS-PFM Series Resonant High Frequency Inverter for Electromagnetic Induction Eddy Current-Heated Roller

  • Mun, Sang-Pil;Kang, Shin-Chul;Kim, Soo-Wook;Nakaoka, Mutsuo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.28-36
    • /
    • 2008
  • This paper presents a novel prototype of zero current switching pulse frequency modulation (ZCS-PFM )high frequency series resonant inverter using IGBT power module for electromagnetic induction eddy current heated roller in copy and printing machines. The operating principle and unique features of this voltage-fed half bridge inverter with two additional soft commutation inductor snubber are presented including the transformer modeling of induction heated rolling drum. This soft switching inverter can achieve stable zero current soft commutation under a discontinuous and continuous resonant load current for a widely specified power regulation processing. The experimental results and computer-aided analysis of this inverter are discussed from a practical point of view.

Zero-Current Switching LLC Resonant Post-Regulator for Independent Multi-Output (독립된 다중출력을 위한 영전류 스위칭 LLC 공진형 Post-Regulator)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • A new zero-current switching LLC resonant post-regulator for multi-output power system is proposed in this paper. A conventional LLC resonant converter employs extra non-isolated DC/DC converters to obtain tight-regulated multi-slave output voltages. Therefore, it has several serious problems such as a poor efficiency and high cost of production. The proposed post-regulator features low voltage and current stress across the output rectifier diodes and power switches. Moreover, the proposed post-regulator requires only one power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure and lower cost. Especially, since the proposed post-regulator can ensure the ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a proposed zero-current LLC resonant post-regulator are presented.

Self-Reset Zero-Current Switching Circuit for Low-Power and Energy-Efficient Thermoelectric Energy Harvesting (저전력 고에너지 효율 열전에너지 하베스팅을 위한 자가 리셋 기능을 갖는 영점 전류 스위칭 회로 설계)

  • An, Ji Yong;Nguyen, Van Tien;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.206-211
    • /
    • 2021
  • This paper proposes a Self-Reset Zero-Current Switching (ZCS) Circuit for thermoelectric energy harvesting. The Self-Reset ZCS circuit minimizes the operating current consumed by the voltage comparator, thereby reduces the power consumption of the energy harvesting circuit and improves the energy conversion efficiency by adding the self-reset function to the comparator. The Self-Reset ZCS circuit shows 3.4% of improvement in energy efficiency compared to the energy harvesting system with the conventional analog comparator ZCS for the output/input voltage ratio of 5.5 as a result of circuit simulation. The proposed circuit is useful for improving the performance of the wearable and bio-health-related harvesting circuits, where low-power and energy-efficient thermoelectric energy harvesting is needed.

Development of Boost Type Bidirectional ZCS DC/DC Converter For EV of Transformer Series Construction (변압기 직렬구조의 EV용 승압형 양방향 ZCS DC/DC 컨버터 개발)

  • Choi, Jung-Sik;Park, Byung-Chul;Chung, Dong-Hwa;Song, Sung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.37-46
    • /
    • 2013
  • This paper proposes the boost type bidirectional zero current switching(ZCS) DC/DC converter of transformer series construction for electric vehicle operation using low voltage battery. This converter can high boost through the double voltage circuit and series construction of output part using two converters. This converter system has the advantages that bidirectional power transfer is excellent, size and making of transformer because of this converter keeps the transformation ratio to 1:1. Proposed DC/DC converter uses the ZCS method to decrease the switching loss. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer and half-bridge capacitor it reduces system size and expense because of not add special reactor. It can confirm to output of high voltage to operate the electric vehicle with low voltage of input and operation of ZCS in all load region through the result of PSIM simulation and experiment.

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

A New ZCS PWM Boost Converter with operating Dual Converter (Dual 컨버터로 동작하는 새로운 ZCS PWM Boost Converter)

  • Kim Tea-Woo;Chin Gi-Ho;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.525-528
    • /
    • 2002
  • A Novel Zero Current Switching(ZCS) Pulse Width Modulation(PWM) boost converter for reducing two rectifiers reverse recovery related losses Is proposed. The switches of the proposed converter are operating to work alternatively turn-on and turn-off with soft switching(ZVS, ZCS) condition. The reverse recovery related switching losses and EMI problems of the proposed converter eliminates the reverse recovery current of the freewheeling diode(D, Dl) by adding the resonant inductor Lr, in series with the switch S2. The voltage and current stresses of the components are similar to those in its conventional hard switching counterpats. As mentioned above, the characteristics are verified through experimental results.

  • PDF