• Title/Summary/Keyword: ZBrush

Search Result 7, Processing Time 0.022 seconds

A Study on the Effective Production of Game Weapons Using ZBrush

  • YunChao Yang;Xinyi Shan;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.397-402
    • /
    • 2023
  • With the rapid adoption of 5G, the gaming industry has undergone significant innovation, with the quality of game content and player experience becoming the focal point of attention. ZBrush, as a professional digital sculpting software, plays a crucial role in the production of 3D game models. In this paper, we explore the application methods and techniques of ZBrush in game weapons production through specific case analyses. We provide a detailed analysis of two game weapon models, discussing the design and modeling process, lowto-high poly conversion, UV unwrapping and texture baking, material texture creation and optimization, and final rendering. By comparing the production process and analyzing the advantages and disadvantages of ZBrush, we establish a theoretical foundation for further design research and provide reference materials for game industry professionals, aiming to achieve higher quality and efficiency in 3D game model production.

ZBrush 3D animation character modeling using ZSphere (ZSphere를 활용한 ZBrush의 3D애니메이션 캐릭터모델링)

  • Ryu, Chang-Su;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1312-1317
    • /
    • 2012
  • ZSphere of ZBrush can be added to the canvas, and most of all, added to the existing ZSphere as mobile geometrical objects. For example, arms can be produced out of the globoid in the progress of an intermediate step. characters with multiple limbs can be produced easily in this way. With Zsphere, several Child Spheres can be produced out of single Sphere, then these can be parents spheres, and can connect other Child Spheres. In this paper, by making each form through these processes, 3D characters were modeled to shape easily and rapidly. Since 3D objects can be added, rotated, and moved, they can interact smoothly with Z-depth of campus. To place these objects on the screen, paint, build fixed perspective image, smerge pixols and transform 3D objects, diverse transforming tools and sculpturing tools were used. The characters were designed in the way that first, the finished 3D characters were transformed into poly, then each side was restructured rapidly with Topology.

Character modeling using ZSphere (ZSphere를 활용한 캐릭터모델링)

  • Ryu, Chang-Su;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.524-526
    • /
    • 2011
  • ZSphere of ZBrush can be added to the screen, and most of all, added to the existing ZSphere as mobile geometrical objects. For example, legs can be produced out of the globoid in the progress of an intermediate step. characters with multiple limbs can be produced easily in this way. With Zsphere, several Child Spheres can be produced out of single Sphere, then these can be parents spheres, and can connect other Child Spheres. In this paper, by making each form through these processes, 3D characters were modeled to shape easily and rapidly. Since 3D objects can be added, rotated, and moved, they can interact smoothly with Z-depth of campus. To place these objects on the screen, paint, build fixed perspective image, smerge pixols and transform 3D objects, diverse transforming tools and sculpturing tools were used. The characters were designed in the way that first, the finished 3D characters were transformed into poly, then each side was restructured rapidly with Topology.

  • PDF

A Study on Effective Methods of Polygon Modeling through Modeling Process-Related System (모델링 공정 연계 시스템을 통한 효율적 폴리곤 모델링 기법에 대한 탐구)

  • Kim, Sang-Don;Lee, Hyun-Seok
    • Cartoon and Animation Studies
    • /
    • s.37
    • /
    • pp.143-158
    • /
    • 2014
  • In the modeling processes of 3D computer animation, methods to build optimal work conditions to realize real forms for more efficient works have been advanced. Digital sculpting software, published in 1999, ZBrush has been positioned as an essential factor in character model work requiring of realistic descriptions through different manufacturing methods from previous modeling work processes and easy shape realization. Their functional areas are expanding. So, in this production case paper, as a method to product more optimized animation character models, the efficiency of production method linking digital sculpting software (Z-Brush) and animation production software (Maya) was deliberated and its consequences and implications are suggested. To this end, first the technical features of polygon modeling and Retopology were reviewed. Second, based on it, the efficiency of animation character modeling work processes through step linking ZBrush and Maya suggested in this paper was analyzed. Third, based on the features drawn before, in order to prove the hypothesis on modeling optimization method suggested in this paper, the production process of character Dumvee from a short animation film, 'Cula & Mina' was analyzed as an example. Through this study, it was found that technical approach easiness and high level of completion could be realized through two software linked work processes. This study is considered to be a reference for optimizing production process of related industries or modeling-related classes by deliberating different modeling process linked systems.

A 3D Game Character Design Using MAYA (MAYA를 이용한 3D게임 캐릭터 디자인)

  • Ryu, Chang-Su;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1333-1337
    • /
    • 2011
  • 3D engines loading, and expansion of the usable capacity, next-generation smartphone game markets are rising briskly by the improvement in CPU processing speed of Phones (hardware of smartphone). Therefore, in creating 3D game characters, realistic and free-form animations in a small screen of a smartphone are becoming important. Through this paper, as a method of creating characters and operating for game characters to cause user's feeling, with NURBS data of MAYA, We completed a face in turns of eyes, a nose, and a mouth, and with Polygon Cube tool, modeled hands and feet. After dividing a cube into half and modeling it, through mirror copying We completed the whole body and modeled the low-polygon. Then to model realistic and free-form characters, We completed each detail with ZBrush and applied Divide level up to 4. Though they might look rough and exaggerated, We tried to express stuck-out parts and fallen-in parts effectively and smoothly with Smooth brush effect, map and design the low-polygon 3D characters.

A 3D Game Character Design Using MAYA (MAYA를 이용한 3D게임 캐릭터 디자인)

  • Ryu, Chang-Su;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.300-303
    • /
    • 2011
  • Owing to the improvement in CPU processing speed of Phones (hardware of smartphone), 3D engines loading, and expansion of the usable capacity, next-generation smartphone game markets are rising briskly. Therefore, in creating 3D game characters, realistic and free-form animations in a small screen of a smartphone are becoming important. Through this paper, as a method of creating characters and operating for game characters to cause user's feeling, with NURBS data of MAYA, We completed a face in turns of eyes, a nose, and a mouth, and with Polygon Cube tool, modeled hands and feet. After dividing a cube into half and modeling it, through mirror copying We completed the whole body and modeled the low-polygon. Then to model realistic and free-form characters, We completed each detail with ZBrush and applied Divide level up to 4. Though they might look rough and exaggerated, We tried to express stuck-out parts and fallen-in parts effectively and smoothly with Smooth brush effect, map and design the low-polygon 3D characters.

  • PDF

Development of a Custom-Made Dress Form for Draping Based on 3D Handheld Scanners and 3D Printing Technology (3D 핸디형 스캐너와 3D 프린팅 기술 기반 드레이핑용 커스텀 메이드 드레스폼 개발)

  • Ryu, Eun Joo;Song, Hwa Kyung
    • Fashion & Textile Research Journal
    • /
    • v.24 no.4
    • /
    • pp.451-459
    • /
    • 2022
  • This study aimed to develop a a custom-made dress form for draping using a live model's 3D body scan obtained from an entry-level 3D handheld scanners, 3D modeling software and 3D printing technology. A female subject was recruited whose body size fell under the normal (N) body shape criteria suggested by KS K 0051. First, the handheld scanner reduced the length of the legs in scanning, but most of the scanning operations between the neck and crotch levels were conducted accurately. Therefore, this study was designed to develop a torso dress form. The full body 3D scan was edited into a torso shape using ZBrush® software. Using Rhinoceros® and Materialise's Magics software, a 3D body scan was modeled so that the user could fit two types of mannequin stands (one with a neck fixation from above and one with an insert from below) to the dress form. The body scan was divided into 9 pieces to fit the printable size of the Stratasys 3D printer Fortus 250mc, and the cross-sectional distance from the center to the periphery was downsized by 2 mm. After outputting the dress form scan file with a 3D printer, the dress form was manufactured by the first covering it with a 4 oz nonwoven pad and the second covering with a single jersey material.