• 제목/요약/키워드: ZBTB3

검색결과 6건 처리시간 0.019초

Zinc finger and BTB domain-containing protein 3 is essential for the growth of cancer cells

  • Lim, Ji-Hong
    • BMB Reports
    • /
    • 제47권7호
    • /
    • pp.405-410
    • /
    • 2014
  • ZBTB3 belongs to the Zinc finger and BTB/POZ domain containing transcription factor family; however, its biological role has rarely been studied. We demonstrate for the first time, to our knowledge, that ZBTB3 is an essential factor for cancer cell growth via the regulation of the ROS detoxification pathway. Suppression of ZBTB3 using two different short hairpin RNAs in human melanoma, lung carcinoma, and breast carcinoma results in diminished cell growth. In addition, we found that suppression of ZBTB3 activates a caspase cascade, including caspase-9, -3, and PARP leading to cellular apoptosis, resulting from failed ROS detoxification. We identified that ZBTB3 plays an important role in the gene expression of ROS detoxification enzymes. Our results reveal that ZBTB3 may play a critical role in cancer cell growth via the ROS detoxification system. Therefore, therapeutic strategies that target ZBTB3 could be used in selective cancer treatments.

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권3호
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

Altered Gene Expression Profiles in the Lungs of Streptozotocin-induced Diabetic Mice

  • Kim, Jung-Hyun;Rasaei, Roya;Park, Sujin;Kim, Ji-Young;Na, Sunghun;Hong, Seok-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권3호
    • /
    • pp.197-205
    • /
    • 2020
  • Diabetes mellitus is a common heterogeneous metabolic disorder, characterized by deposition of extracellular matrix, oxidative stress, and vascular dysfunction, thereby leading to gradual loss of function in multiple organs. However, little attention has been paid to gene expression changes in the lung under hyperglycemic conditions. In this study, we found that diabetes inuced histological changes in the lung of streptozotocin-induced diabetic mice. Global gene expression profiling revealed a set of genes that are up- and down-regulated in the lung of diabetic mice. Among these, expression of Amigo2, Adrb2, and Zbtb16 were confirmed at the transcript level to correlate significantly with hyperglycemia in the lung. We further evaluated the effect of human umbilical cord-derived perivascular stem cells (PVCs) on these gene expression in the lung of diabetic mice. Our results show that administration of PVC-conditioned medium significantly suppressed Amig2, Adrb2, and Zbtb16 upregulation in these mice, suggesting that these genes may be useful indicators of lung injury during hyperglycemia. Furthermore, PVCs offer a promising alternative cell therapy for treating diabetic complications via regulation of gene expression.

Association of a c.1084A>G (p.Thr362Ala)Variant in the DCTN4 Gene with Wilson Disease

  • Lee, Robin Dong-Woo;Kim, Jae-Jung;Kim, Joo-Hyun;Lee, Jong-Keuk;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제8권1호
    • /
    • pp.53-57
    • /
    • 2011
  • 목 적: 윌슨병은 간조직에 구리의 과도한 침착으로 발병하는 상염색체 열성 유전질환이다. 지금까지 ATP7B 유전자가 유일한 원인유전자로 알려져 왔다. 그러나, 약 15%의 환자에서는 ATP7B 유전자 돌연변이가 발견되지 않는다. 본 연구는 ATP7B 유전자의 돌연변이가 발견되지 않은 윌슨병 환자를 대상으로 새로운 원인 유전자를 발견하기 위하여 시행되었다. 대상 및 방법: ATP7B 돌연변이가 발견되지 않은 12명의 윌슨병 환자를 대상으로 ATP7B 와 상호작용을 하는 것으로 알려진 ATOX1, COMMD1, GLRX, DCTN4와 ZBTB16 유전자의 전사부위와 엑손-인트론 경계부위의 염기서열을 분석하였다. 결 과: DCTN4 유전자의 12번 엑손에 존재하는 c.1084A>G(p.Thr362Ala)를 포함하는 3가지의 변이가 환자에서 발견되었다. in silico 분석을 통해 3가지 변이 중 c.1084A>G가 유일하게 단백질 기능 변화를 일으킬 것으로 예측되었다. 176명의 윌슨병 환자와 414명의 정상인을 대상으로 이 변이의 빈도를 조사한 결과, 정상인보다 윌슨병 환자에서 더 높은 빈도를 나타내었다(상대비, odds ratio [OR]=3.14, 95% 신뢰도=1.36-7.22, P=0.0094). 결 론: 본 연구의 결과는 ATP7B 와 상호작용하는 DCTN4 유전자의 c.1084A>G (p.Thr362Ala) 다형성이 윌슨병의 발병과 연관이 있음을 시사한다.

Genome-Wide Association Study of Bone Mineral Density in Korean Men

  • Bae, Ye Seul;Im, Sun-Wha;Kang, Mi So;Kim, Jin Hee;Lee, Soon Hang;Cho, Be Long;Park, Jin Ho;Nam, You-Seon;Son, Ho-Young;Yang, San Deok;Sung, Joohon;Oh, Kwang Ho;Yun, Jae Moon;Kim, Jong Il
    • Genomics & Informatics
    • /
    • 제14권2호
    • /
    • pp.62-68
    • /
    • 2016
  • Osteoporosis is a medical condition of global concern, with increasing incidence in both sexes. Bone mineral density (BMD), a highly heritable trait, has been proven a useful diagnostic factor in predicting fracture. Because medical information is lacking about male osteoporotic genetics, we conducted a genome-wide association study of BMD in Korean men. With 1,176 participants, we analyzed 4,414,664 single nucleotide polymorphisms (SNPs) after genomic imputation, and identified five SNPs and three loci correlated with bone density and strength. Multivariate linear regression models were applied to adjust for age and body mass index interference. Rs17124500 ($p=6.42{\times}10^{-7}$), rs34594869 ($p=6.53{\times}10^{-7}$) and rs17124504 ($p=6.53{\times}10^{-7}$) in 14q31.3 and rs140155614 ($p=8.64{\times}10^{-7}$) in 15q25.1 were significantly associated with lumbar spine BMD (LS-BMD), while rs111822233 ($p=6.35{\times}10^{-7}$) was linked with the femur total BMD (FT-BMD). Additionally, we analyzed the relationship between BMD and five genes previously identified in Korean men. Rs61382873 (p = 0.0009) in LRP5, rs9567003 (p = 0.0033) in TNFSF11 and rs9935828 (p = 0.0248) in FOXL1 were observed for LS-BMD. Furthermore, rs33997547 (p = 0.0057) in ZBTB and rs1664496 (p = 0.0012) in MEF2C were found to influence FT-BMD and rs61769193 (p = 0.0114) in ZBTB to influence femur neck BMD. We identified five SNPs and three genomic regions, associated with BMD. The significance of our results lies in the discovery of new loci, while also affirming a previously significant locus, as potential osteoporotic factors in the Korean male population.

Effects of different culture systems on the culture of prepuberal buffalo (Bubalus bubalis) spermatogonial stem cell-like cells in vitro

  • Li, Ting-Ting;Geng, Shuang-Shuang;Xu, Hui-Yan;Luo, Ao-Lin;Zhao, Peng-Wei;Yang, Huan;Liang, Xing-Wei;Lu, Yang-Qing;Yang, Xiao-Gan;Lu, Ke-Huan
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.13.1-13.14
    • /
    • 2020
  • Currently, the systems for culturing buffalo spermatogonial stem cells (SSCs) in vitro are varied, and their effects are still inconclusive. In this study, we compared the effects of culture systems with undefined (foetal bovine serum) and defined (KnockOut Serum Replacement) materials on the in vitro culture of buffalo SSC-like cells. Significantly more DDX4- and UCHL1-positive cells (cultured for 2 days at passage 2) were observed in the defined materials culture system than in the undefined materials system (p < 0.01), and these cells were maintained for a longer period than those in the culture system with undefined materials (10 days vs. 6 days). Furthermore, NANOS2 (p < 0.05), DDX4 (p < 0.01) and UCHL1 (p < 0.05) were expressed at significantly higher levels in the culture system with defined materials than in that with undefined materials. Induction with retinoic acid was used to verify that the cultured cells maintained SSC characteristics, revealing an SCP3+ subset in the cells cultured in the defined materials system. The expression levels of Stra8 (p < 0.05) and Rec8 (p < 0.01) were significantly increased, and the expression levels of ZBTB16 (p < 0.01) and DDX4 (p < 0.05) were significantly decreased. These findings provided a clearer research platform for exploring the mechanism of buffalo SSCs in vitro.