• Title/Summary/Keyword: Z-shape design

Search Result 59, Processing Time 0.023 seconds

Design of Inlet Manifold for PEM Fuel Cells and Numerical Analysis (고분자 전해질 연료전지를 위한 연료주입구 설계 및 수치해석)

  • Uhm, Seung-Bae;Na, Tae-Kyung;Kim, Hong-Suk;Baek, Jung-Sik;Sung, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.172-175
    • /
    • 2007
  • The Performance of a PEMFC stack is strongly dependent on the uniform reactants distribution on MEA. The uniform distribution can be achieved by flow-field pattern and manifold design optimized to satisfy operating conditions. This paper investigates uniform reactants distribution in channels by changing manifold shape and inlet mass flow rate. Typical U and Z shape and modified U and Z shape manifolds with buffer zone were designed. To check the uniform reactants distribution, standard deviation of mass flow rate was compared. The numerical results show that the inlet mass flow rate, inlet shape, and manifolds shape are critical factor for uniform distribution.

  • PDF

Energy Absorption Characteristics of Z-shape Fabric under High Velocity Impact (Z형 직물의 고속 충격 에너지 흡수 특성)

  • Choi, Chunghyeon;Park, Yurim;Kim, YunHo;Noh, Jae-young;Kim, Chun-Gon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.176-181
    • /
    • 2015
  • In this study, the Z-shape fabric design is proposed as the way to enhance the ballistic performance of fabrics which are used as the intermediate layer of stuffed Whipple shield configurations. The Z-shape fabric employs a different boundary condition from those of conventional configurations of fabrics which include 4 edge fixed. Impact analysis on Z-shape aramid yarns and fabrics using LS-DYNA software was performed and the results were compared with 2 edge fixed and 4 edge fixed fabrics to identify the high velocity impact energy absorption characteristics of the Z-shape fabric. It was revealed that the Z-shape showed different impact behavior and higher energy absorption performance than 2 and 4 edge fixed fabrics.

A Study on MZ Generation(2030s) Male Body Shape Comparison and Body Shape Change - Focused on the 7th and 8th Size Korea's Anthropometric Data - (MZ세대(2030대) 남성의 체형비교 및 체형 변화 연구 - 제 7차, 제 8차 사이즈코리아 직접 측정치를 기준으로 -)

  • Ji-Eun Kim;Eun-Kyong Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, the difference in human body dimensions between the age groups of Generation M (27 to 39 years old) and Generation Z (20 to 26 years old) was analyzed. This study also analyzed if there was a change in the body shape of the MZ generation, who have different sensibilities from the "young people" of the past. In addition, major changes in human body dimensions were carefully analyzed and presented as basic data for clothing design. Therefore, a t-test was performed to verify the significant differences in the measurements of each age group. To examine the change in human body measurements according to the measurement year, the 7th and 8th size Korea data statistics were analyzed. The main required dimensions of clothing design were analyzed graphically for visual changes according to measurement year and age group. As a result of the analysis, Generation Z was found to have a difference in body shape from Generation M, and is generally smaller and slimmer with broader shoulders. In addition, the body shape change between the 7th and 8th measurement periods was significantly higher than the 8th measurement overall. Height has increased and back length has become shorter, resulting in a larger ratio of lower body length. In addition, the proportion of obesity abnormalities has increased. Therefore, since the dimensional system set from the past data can cause problems for the fitting of clothing for the MZ generation, it is necessary to design the clothing and reset the dimensional system making it suitable for the changed the body shape of the MZ generation.

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

A Study on the Efficient Occlusion Culling Using Z-Buffer and Simplified Model (Z-Buffer와 간략화된 모델을 이용한 효율적인 가려지는 물체 제거 기법(Occlusion Culling)에 관한 연구)

  • 정성준;이규열;최항순;성우제;조두연
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • For virtual reality, virtual manufacturing system, or simulation based design, we need to visualize very large and complex 3D models which are comprising of very large number of polygons. To overcome the limited hardware performance and to attain smooth realtime visualization, there have been many researches about algorithms which reduce the number of polygons to be processed by graphics hardware. One of these algorithms, occlusion culling is a method of rejecting the objects which are not visible because they are occluded by other objects, and then passing only the visible objects to graphics hardware. Existing occlusion culling algorithms have some shortcomings such as the required long preprocessing time, the limitation of occluder shape, or the need for special hardware implementation. In this study, an efficient occlusion culling algorithm is proposed. The proposed algorithm reads and analyzes Z-buffer of graphics hardware using Microsoft DirectX, and then determines each object's visibility. This proposed algorithm can speed up visualization by reading Z-buffer using DirectX which can access hardware directly compared to OpenGL, by reading only the region to which each object is projected instead of reading the whole Z-Buffer, and the proposed algorithm can perform more exact visibility test by using simplified model instead of using bounding box. For evaluation, the proposed algorithm was applied to very large polygonal models. And smooth realtime visualization was attained.

A Study on Changes in Body Shape of MZ Generation (2030s) Women for Clothing Construction - Focused on the 7th and 8th Size Korea's Anthropometric Data - (의복설계를 위한 MZ세대(2030대) 여성의 체형 변화 연구 - 제 7차, 제 8차 사이즈코리아 직접 측정치를 기준으로 -)

  • Kim, Eun-Kyong;Kim, Ji-Eun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.3
    • /
    • pp.111-125
    • /
    • 2022
  • Recently, the MZ generation has been leading overall fashion trends, and fashion companies focus on design, marketing, and new products targeting the MZ generation. However, it is expected that a fit problem may occur if the M and Z generations are combined when producing clothing. Therefore, this study aims to analyze the differences between the two groups by comparing the body size according to the classification of the M and Z generations. In addition, this study analyzes whether the body shape of the MZ generation is different from the past generations and analyzes major changes in body size for clothing manufacturing through graphical visualization. As for the research method, a t-test was conducted to verify the significant difference between the measurements for each age group. Generation M was defined as those who are 27-39 years old, and Generation Z was defined as those who are 20-26 years old. In order to examine the changes in body measurements according to the measurement year, the 7th Size Korea and 8th Size Korea data were analyzed. In order to examine the visual changes according to the measurement year and age group, major measurements of clothing construction were analyzed. As a result, it was found that Generation M had a significantly higher height item than Generation Z. Also, in terms of circumference, width, and thickness, Generation M was larger than Generation Z. But the size of the bra cup was larger in Generation Z than Generation M. As a result of analyzing the body size changes, in the height item, the 8th Size Korea measurements were found to be significantly higher in shoulder height and navel level waist height. In the length and circumference items, the 8th Size Korea measurements were larger than the 7th. In the width, thickness, and other items, the 8th measurements were larger than the 7th.

A Study of Algorithm for Press Layout Setup using Product design Data (제품 설계 데이터를 이용한 프레스 금형 Layout 설정을 위한 알고리즘에 관한 연구)

  • 이상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.391-396
    • /
    • 2000
  • Today most companies are designing their automobile shapes by using 3 dimensional CAD software, CATIA. And they used to design 2 dimensional press dies to do some elastic work on their products, but they are currently trying to make use of dimensional software, Pro-Engineer. In this case, they have to change the 3 dimensional product design data to the proper format data for the following process. This paper will show the data loss and the deformation during data transfer between CATIA and Pro-Engineer, and then suggest a solution for these problems. Product's surface will be automatically placed by automatic press tipping angle setting in CATIA to prevent the product from being stuck in the press die. The 2 dimensional section view which is based on the tipping angle setting is created by Z-map. And, to remove the data loss and the data deformation in pro-Engineer, the product surface are delivered to the next process after it is changed to the 2 dimensional Z-map curves in CATIA. finally, this paper suggests an algorithm to develop the automatic design program for the press layout which regenerates product shape surface from the previous process.

  • PDF

A Study of Algorithm for Press Layout Setup using Product Design Data (제품 설계 데이터를 이용한 프레스 금형 레이아웃 설정을 위한 알고리즘에 관한 연구)

  • 이상준;이성수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.38-44
    • /
    • 2002
  • Today most companies are designing their automobile shapes by using 3 dimensional CAD software, CATIA. And they used to design 2 dimensional press dies to do some elastic work on their products, but they are currently trying to make use of 3 dimensional software, Pro-Engineer. In this case, they have to change the 3 dimensional product design data to the proper format data for the following process. This paper will show the data loss and the deformation during data transfer between CATIA and Pro-Engineer, and then suggest a solution for these problems. Product's surface will be automatically placed by automatic press tipping angle setting in CATIA to prevent the product from being stuck m the press die. The 2 dimensional section view which is based on the tipping angle setting is created by Z-map. And, to remove the data loss and the data deformation in Pro-Engineer, the product surface are delivered to the next process after it is changed to the 2 dimensional Z-map curves in CATIA. Finally, this paper suggests an algorithm to develop the automatic design program for the press layout which regenerates product shape surface from the previous process.

A Study on the Optimum Design of Soltless Type PMLSM Using Genetic Algorithm and 3-D Space Harmonic Method (유전 알고리즘과 3차원 공간고조파법을 이용한 Soltless Type PMLSM의 최적설계에 관한 연구)

  • 이동엽;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.463-468
    • /
    • 2004
  • This paper was applied space harmonic method as a characteristic analysis technique for slotless PMLSM. There is advantages of active response to the change of design parameters as well as reduction of the calculation time. The method can be overcome disadvantages of finite element analysis that needs long times calculation, repetitions of pre and post-process. In this paper, 3D-space harmonic method was applied to consider the precise description of end turn coil shape and the changes of characteristic according to changes of length of z-axis direction. The thrust of optimal design was performed using genetic algorithm to enhance the thrust which is the disadvantage of slotless type PMLSM. For design parameters, width of permanent magnet, width of coil, width of coil inner and lengths of z-axis direction were selected. For objective functions. thrust per weight. thrust per volume. multi-objective function was selected.

Parametric Modeling Method for 3D Assembly Design of Parts Composing Superstructure Module on Modular Steel Bridge (모듈러 강교량 상부모듈 구성파트의 3차원 조립설계를 위한 파라메트릭 모델링 방법)

  • Lee, Sang Ho;An, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.35-46
    • /
    • 2013
  • A parametric modeling method, one of the core technology of BIM (Building Information Modeling), is proposed for efficient 3D assembly design among components of a superstructure module of modular steel bridge. Assembly system is classified into 3 levels as LoD (Level of Details) for 3D assembly design of the parts. Components forming 3D shape of the parts are identified and defined as parameters, variables depending on parameters, or constants independent of the parameters. Then, spatial assembly rules among the parts are defined according to the assembly system. Positional relations among the identified shape components are defined for mating spatial position and geometrical relations are defined for constraining degree of freedom on X, Y, and Z axis. Finally, a standardized template is designed by applying the rules to 3D based assembly design for the parts of the superstructure module. In addition, applicability of the parametric modeling method is demonstrated by testing the shape variation of the superstructure module according to changing the defined parameters.