• Title/Summary/Keyword: Z-axis

Search Result 652, Processing Time 0.024 seconds

PID Controller Based on Sliding Mode Control for Bridge Inspection Robot (교량 탐사 로봇을 위한 Sliding Mode 제어를 기반으로 한 PID 제어기)

  • Lee, An-Yong;Lee, Seung-Chul;Oh, Je-Keun;Choi, Young-Jin;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.285-286
    • /
    • 2007
  • This paper presents a robust controller in order to handle the guide rail vibrations of Bridge Inspection System. While a Bridge Inspection Robot moves on guide rails with vibration by weight occurs. Therefore, Guide rail as structure like cantilever beam appears vibration by weight of Bridge Inspection Robot. The Z axis of Bridge Inspection Robot operates with Scissors structure. Bridge Inspection Robot is used 'PID Controller based on Sliding Mode control' for position control with Z axis. At the result of, this paper is applied to simulation about position control regarding vibration to occur with Z axis.

  • PDF

The design of XYZ 3-axis stage for AFM system (AFM 시스템을 위한 XYZ 3축 스테이지의 설계)

  • 김동민;김기현;심종엽;권대갑;엄천일
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • To Establish of standard technique of length measurent in 2D plane, we develope AFM system. The XY scanner scans the sample only in XY plane, while the Z scanner scans the specimen only in Z-direction. Cantilever tip is controlled to has constant height relative to speciman surface by feedback of PSPD signal. To acquire high accuracy, Z-axis measuring sensor will be added.(COXI or others). In this paper we design XYZ stage suitable for this AEM system. For XY stage, single module parallel-kinnematic flexure stage is used which has high orthogonality and minimum out-of-plane motion. To obtain best performance optimal design is performed. For XY stage, to be robust about parasitic motion optimal design of maximizing Z and tilt stiffness is performed under the constraint of motion range and stage size. And for Z stage, optimal design of maximizing 1st resonant frequency is performed. Because if resonant frequency is get higher, scan speed is improved. So it makes reduce the error by sensor drift. Resultly XYZ stage each have 1st natural frequency of 115㎐, 201㎐, 2.66㎑ and range 109㎛, 110㎛, 12㎛.

  • PDF

Effect of Rubber Damper of Flywheel on the Vibration of Diesel Engine (플라이휠의 고무댐퍼가 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, B.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-251
    • /
    • 1993
  • Data acquisition system and computer program developed in this study could be well used in engine vibration analysis. The system and program developed were also operated to be able to control measuring interval, number of channels, number of data. The flywheel was specially studied to provide the proper weight with rubber damper for the engine design at low level of vibration. This study was conducted to obtain basic data which affect the engine vibration. The experiment of this study was performed on original weight flywheel, weight-reduced flywheel, weight-reduced and rubber-coated flywheel, weight-reduced and damper-attached flywheel. Avarage of peak value, maximum vibration, power spectrum density based on FFT analysis are major factors of this experiment. Results were obtained as follows : 1. When rubber was inserted in the flywheel rim of which weight was reduced from 32.2kgf to 24.4 kgf, maximum vibration of the engine was decreased 48.3% at X axis, 35.5% at Y axis and 34.6% at Z axis in comparison with the flywheel of original weight. 2. When the flywheel of rubber damper was compared with the original flywheel, the average of absolute vibration for rubber damped flywheel was decreased at X, Y, Z axis and especially its decreasing rate was so high at X-axis comparing with the other flywheel, which implied that rubber damper was very useful to reducing the vibration of the engine at X axis. 3. Hysteresis losses of X, Y, Z axis were greatly decreased in the flywheel with rubber damper on rim. 4. Damped oscillation effect on X and Y axis vibration above average peak vibration by the flywheel of rubber damper on rim was larger than those by the other flywheels. 5. Power spectrums of vibration at real and imaginery part were bi-mode type. The vibration frequency of rubber dampered flywheel which weight is decreased was slightly increased as compared with original flywheel.

  • PDF

Effect of Surface Roughness on Cutting Conditions in CNC lathe C-Axis Milling Arc Cutting (CNC선반 C축 밀링 원호가공에서 절삭조건이 표면 거칠기에 미치는 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2014
  • The domestic airline industry undertakes the production of finished products by assembling existing self-described components via a design process which involves assembly and production steps, after which many of the finished products are exported. However, high reliability and stability must be guaranteed, because customers require high-precision components at the time of manufacturing. In the aircraft parts industry, the mass production of high-value-added parts is limited. Therefore, a small production scale depending on the part is used, as many types of conventional CNC lathe machines with X-axis and Z-axis as well as Z-axis and C-axis CNC milling are used. The parts also rely on high-pressure air to increase production. The most important factors are good stability during processing, as high-precision parts are required, as noted above. It was found that as the C-axis rotation speed increased, the diameter of the cutting tool decreased with a decrease in the surface roughness, while the workpiece rotation speed increased with an increase in the surface roughness.

Experiment of the Precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 제작 및 평가)

  • Han, C. S.;Paek, S.;No, M. K.;Lee, C. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.244-247
    • /
    • 2002
  • The performance of the precision micro-positioning 4-dof stage is presented. The compact design utilizes the monolithic mechanism to achieve the translation in the Z axis and rotation in the $\theta$ z, $\theta$ x and $\theta$ y axes with high stiffness and high damping. Hysteresis, nonlinearity, and drift of the piezoelectric effects are improved by incorporating the sensors in a feedback control. Experiments demonstrate that the micro-positioning stage is capable of 2nm resolution over the travel range of 25$\mu\textrm$ m in the Z axis, 0.0l7 $\mu\textrm$ rad resolution over the 170$\mu\textrm$ rad in the $\theta$ z and 0.011 $\mu\textrm$ rad resolution over the $\mu\textrm$ rad in the $\theta$ x and $\theta$ y axes. The cross-axis interferences among the axes are at a noise range. This stage is available for positioning error compensation of the XY stage with large stroke.

  • PDF

An Experimental Evaluation for an abnormal vibration on running of the Domestic LRT (Light Rail Transit) (국내 경전철 주행중 이상진동에 대한 시험적 평가)

  • Yang, Hee-Joo;Woo, Kwan-Je;Lee, Kang-Wun;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1321-1326
    • /
    • 2011
  • THE RAILWAY VEHICLE IS CONSISTS OF CARBODY, BOGIE AND WHEELSETS, EACH OF COMPONENTS IS CONNECTED WITH RIGID MASS, SPRING AND DAMPER. EACH OF COMPONENTS HAS TRANSLATION MOTIONS OF LONGITUDINAL (X AXIS), LATERAL (Y AXIS) AND VERTICAL (Z AXIS) DIRECTIONS, ROTATION MOTIONS OF X, Y, Z AXIS WHICH ARE NAMED ROLLING, PITCHING AND YAWING. THE VIBRATION MODE OF RAILWAY VEHICLE IS DIFFICULT TO FIND THE CHARACTERISTICS OF MOTION DURING THE OPERATION ON THE TRACK BECAUSE THESE HAPPEN TO INDEPENDENCE OR DUPLICATION MOTION CAUSED BY VEHICLE, WHEEL/RAIL AND TRACK IRREGULARITY ETC. IT IS NAMED AN ABNORMAL VIBRATION THAT THE VIBRATION, WHICH WAS PASSED THE PRIMARY AND SECONDARY SUSPENSION, IS AFFECTED TO THE PASSENGER WITHOUT DAMPING. THIS PAPER DESCRIBES AN EXPERIENCE EVALUATION TO FIND THE CAUSE OF AN ABNORMAL VIBRATION WHICH WAS HAPPEN AT OPERATING SPEED 60KPH ZONE DURING THE MAINLINE TEST.

  • PDF

A Study for behavior mode frequency of railway vehicle using ramp device (Ramp장치를 이용한 철도차량 거동모드 주파수에 관한 연구)

  • Yang, Hee-Joo;Woo, Kwan-Je;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.30-35
    • /
    • 2010
  • The railway vehicle is a multi-body system running on the track which consists of carbody, bogie and wheelset, each of components is connected with rigid mass, spring and damper. each of components has translation motions of longitudinal (X axis), lateral(Y axis) and vertical(Z axis) direction, and rotation motions of X, Y, Z axis which are named Rolling, Pitching and Yawing. The vibration mode of railway vehicle is difficult to find the characteristics of motion during the operation on the track because these happen to independence or duplication motion caused by vehicle, wheel/rail and track irregularity etc. This paper presents the result of ramp test to show the bounce, roll, pitch and yaw mode frequency of the railway vehicle.

  • PDF

Cutting Simulation of Mold & Die via Hybrid Model of DVM and Z-Map (DVM 및 Z-Map 복합모델을 이용한 금형의 모의가공)

  • 신양호;박정환;정연찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • Geometric cutting-simulation and verification play an important role in detecting NC machining errors in mold & die manufacturing and thereby reducing correcting time & cost on the shop floor. Current researches in the area may be categorized into view-based, solid-based, and discrete vector-based methods mainly depending on workpiece models. Each methodology has its own strengths and weaknesses in terms of computing speed, representation accuracy, and its ability of numerical inspection. The paper proposes a hybrid modeling scheme for workpiece representation with z-map model and discrete vector model, which performs 3-axis and 5-axis cutting-simulation via tool swept surface construction by connecting a sequence of silhouette curves.

The Development of the Software for the Geometry Modeling and Generating CNC Machining Data of a Piston (피스톤의 형상 모델링 및 CNC 가공 데이터 산출용 소프트웨어 개발)

  • Lee, Cheol-Soo;Lee, Je-Phil;Kim, Seong-Bok
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.68-78
    • /
    • 1999
  • A noncircular cutting such as a piston cutting has depended on the copy-machining because of its complex shape. But the copy-machining needs a master model and brings about a low quality of the piston caused by being worn out of the master model. And the lower cutting speed reduces the productivity. In this paper, for solving these problems, a specialized software system and its subsequent procedure are presented. The shape of a piston consists of an oval, an offset, recesses, and eccentricities. The paper describes these shapes as a consistent equation that is a function of the rotational angle and the position of longitudinal direction(Z-axis). It is simple to define the characteristic geometry of a piston and to generate a tool path for CNC machining. This paper proposes the a proper structure of a 4-axes CNC(Computerized Numerical Control) lathe for machining the piston. As well as X-axis and Z-axis, are attached to the machine a C-axis for rotation and a Y-axis for higher speedy prismatic motion parallel to X-axis.

  • PDF