• 제목/요약/키워드: Z-Layout

검색결과 19건 처리시간 0.025초

알루미늄 합금 형재의 열간압출 금형설계 (A Design of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys)

  • 조해용;김관우;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.531-534
    • /
    • 1997
  • A design system of dies for hot extrusion of structural shapes such as Z' s, L' s, T' s, U' s and H' s from aluminum alloys was developed in this study. The developed design system of dies is based of established die design rule system. The design rules for die design are obtained from the handbooks, plasticity theories and relevant references. The environment of the system is AutoCAD and AutoLISP, the graphic programming language was used for the configuration of the system. This system includes five major modules such as section shape design module, die opening number module. die opening layout module, die correction module and die bearing design module that are used to determine design variables. This system would be used to design of dies for hot extrusion from aluminum alloys and widely used in manufacturing course..

  • PDF

연합 처리기를 이용한 직교선형 스타이너 트리의 병렬 알고리즘 (A Parallel Algorithm For Rectilinear Steiner Tree Using Associative Processor)

  • Taegeun Park
    • 전자공학회논문지B
    • /
    • 제32B권8호
    • /
    • pp.1057-1063
    • /
    • 1995
  • This paper describes an approach for constucting a Rectilinear Steiner Tree (RST) derivable from a Minimum Spanning Tree (MST), using Associative Processor (AP). We propose a fast parallel algorithm using AP's basic algorithms which can be realized by the processing capability of rudimentary logic and the selective matching capability of Content- Addressable Memory (CAM). The main idea behind the proposed algorithm is to maximize the overlaps between the consecutive edges in MST, thus minimizing the cost of a RST. An efficient parallel linear algorithm with O(n) complexity to construct a RST is proposed using an algorithm to find a MST, where n is the number of nodes. A node insertion method is introduced to allow the Z-type layout. The routing process which only depends on the neighbor edges and the no-rerouting strategy both help to speed up finding a RST.

  • PDF

최소중량(最小重量) 및 건조비(建造費)를 위한 유조선(油槽船) 중앙단면(中央斷面) 설계(設計)에 관한 연구(硏究) (A Study on the Minimum Weight and/or Cost Design of a Midship Structure of Oil Tanker)

  • 김재근;어민우;신종계
    • 대한조선학회지
    • /
    • 제20권2호
    • /
    • pp.21-26
    • /
    • 1983
  • In this light of economical engineering, the optimal configurations of ship structure that can save weights, production costs and operation costs should be investigated. This paper presents the general method of optimization based on non-linear programming and its application to weight and/or cost minimization of ship structure. Oil tanker is chosen as a ship type because of simple layout and easy calculation of stress. With the data of 16,200 DWT oil tanker built by KSEC 1980, this paper shows the procedure mentioned above by means of SUMT combined with two selected search methods. Then the differences between original and redesigned tanker structures are discussed.

  • PDF

읽기 순서 바꾸기 : 타블렛PC 전자만화책의 레이아웃 연출 (Breaking Z-path : A Digital Comics Layout Strategy for Tablet PC)

  • 여미주;시정곤
    • 만화애니메이션 연구
    • /
    • 통권24호
    • /
    • pp.49-64
    • /
    • 2011
  • 만화는 넓이와 위치값을 가지고 있는 연속적인 칸을 배열하여 이야기를 전개하므로 문자언어인 텍스트에 비해 공간 예술에 가까우나, 보통 만화를 읽을 때 한 페이지 안에서 왼쪽에서 오른쪽으로, 위에서 아래쪽으로 시선이 흐르는 전형적인 텍스트 읽기 관습에서 벗어나지 않는다. 그러나 만화 공간 문법의 여러 요소에 따라 부분적으로 읽기 순서가 뒤바뀌는 경우가 있다. 본 논문은 칸의 배치와 내용, 혹은 프레임 바깥에 존재하는, 만화책을 읽는 독자 시선의 흐름 순서를 뒤바꾸는 여러 가지 요소들을 분석해보았다. 나아가, 책이라는 매체와 가장 흡사하나 페이지 제한이 없는 무한 캔버스인 타블렛 PC용 전자만화책의 공간에서, 상호작용 기능을 활용하여 읽기 순서를 바꾸는 레이아웃 기법을 제안해 보았다. 이에 향후 전개될 타블렛 PC용 전자만화의 레이아웃 형태를 전망하는데 의의를 두었다.

비컨노드의 동적배치 기반 3차원 삼각측량 알고리즘을 적용한 위치인식 시스템에 대한 연구 (A Study on Localization System using 3D Triangulation Algorithm based on Dynamic Allocation of Beacon Node)

  • 이호철;이동명
    • 한국통신학회논문지
    • /
    • 제36권4B호
    • /
    • pp.378-385
    • /
    • 2011
  • 본 논문에서는 제한된 실험 영역이 아닌 실제 영역에서 동적으로 비컨노드를 배치할 수 있는 3차원 삼각측량 알고리즘을 제안하고 이를 위치인식 시스템에 적용한 후 그 성능을 분석하였다. 비컨노드와 이동노드간의 거리를 계산함에 있어서 기존의 삼각측량법에서는 이들 노드간의 거리를 반지름으로 하는 3개의 원이 중첩되는 2차원 지점을 계산하지만, 제안하는 알고리즘에서는 3개의 구 표면이 중첩되는 3차원 지점을 계산하는 방법을 적용한다. 또한 제안하는 알고리즘에 의한 위치인식 시스템의 성능을 분석하기 위해 먼저 비컨노드의 배치형태를 실제의 모형으로 제작하고, 사면체인 실제 모형을 컴퓨터에서 시뮬레이션 할 수 있도록 이동노드의 거리 값 및 비컨노드 간의 임의의 거리 값 10개를 추출하여 모델링하였다. 그 다음 제안된 알고리즘과 2 차원 삼각측량법에 의해 계산된 각 이동노드의 2차원 좌표를 서로 비교하고, 제안하는 알고리즘의 3차원 좌표(z축)에 대한 위치정확도를 실제 모형의 3차원 좌표와 비교하여 확인하였다.

알루미늄 합금 형재의 열간압출 금형설계 시스템 (A Design System of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys)

  • 조해용;김관우;최재찬
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.131-136
    • /
    • 2002
  • A design system of dies for hot extrusion of structural shapes such as Z's, L's, T's, U's and H's from aluminium alloys was developed in this study. The developed design system of dies is based of estimated die design rule system. The design rules for die design are obtained from the handbooks, plasticity theories and relevant references. The environment of the system is AutoCAD and AutoLISP, the graphic programming language was used for the configuration of the system. This system includes five major modules such as section shape design module, die opening number module, die opening layout module, die correction module and die bearing design module that are used to determine design variables. This system would be used to design of dies for hot extrusion from aluminum alloys and widely used in manufacturing course.

CAE를 이용한 자동차용 부품(Gear Box)의 주조방안 설계에 대한 사례연구 (Case Study for Casting Design of Automobile Part(Gear Box) Using CAE)

  • 권홍규;장무경
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.179-185
    • /
    • 2012
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize casting design of an automobile part (Gear Box) Computer Aided Engineering (CAE) was performed by using the simulation software (Z Cast). The simulation results were analyzed and compared with experimental results. During the mold filling, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system. For making a better production die casting tool, cooling systems on several thick areas are proposed in order to reduce internal porosities caused by the solidification shrinkage.

신속시작작업에서 2차원 단면데이터를 이용한 3차원 물체의 최적자동배치를 위한 알고리즘의 개발 (Optimal 3-D Packing using 2-D Slice Data for Multiple Parts Layout in Rapid Prototyping)

  • 허정훈;이건우;안재홍
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.195-210
    • /
    • 1997
  • In Rapid Prototyping process, the time required to build multiple prototype parts can be reduced by packing several parts optimally in a work volume. Interactive arrangement of the multiple parts is a tedious process and does not guarantee the optimal placement of all the parts. In this case, packing is a kind of 3-D nesting problem because parts are represented by STL files with 3-D information. 3-D nesting is well known to be a problem requiring an intense computation and an efficient algorithm to solve the problem is still under investigation. This paper proposes that packing 3-D parts can be simplified into a 2-D irregular polygon nesting problem by using the characteristic of rapid prototyping process that the process uses 2-dimensional slicing data of the parts and that slice of the STL parts are composed of polygons. Our algorithm uses no-fit-polygon (NFP) to place each slice without overlapping other slices in the same z-level. The allowable position of one part at a fixed orientation for given parts already packed can be determined by obtaining the union of all NFP's that are obtained from each slice of the part. Genetic algorithm is used to determine the order of parts to be placed and orientations of each part for the optimal packing. Optimal orientation of a part is determined while rotating it about the axis normal to the slice by finite angles and flipping upside down. This algorithm can be applied to any rapid prototyping process that does not need support structures.

  • PDF

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.