• Title/Summary/Keyword: Young modulus

Search Result 1,438, Processing Time 0.04 seconds

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.

EFFECT OF THERMAL CYCLING AND AGING ON THE TENSILE STRENGTH OF GLASS-IONOMER RESTORATIVE MATERIALS (Thermal cycling과 시효처리가 Glass-Ionomer 수복재의 인장강도에 미치는 영향)

  • Baik, Byeong-Ju;Kim, Mun-Hyeon;Lee, Seung-Young;Lee, Seung-Ik;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.677-687
    • /
    • 1999
  • This study was performed to evaluate the effect of aging and thermal cycling on the tensile strength of six commercially available glass-ionomer materials: two chemically set glass-ionomer materials(Fuji II, Fuji IX), two resin-modified glass-ionomer materials(Fuji II LC, Vitremer), and two polyacid-modified composite resins(Compoglass, Dyract). Rectangular tension test specimens were fabricated in a teflon mold giving 5mm in gauge length and 2mm in thickness. All samples were divided into 3 groups. Group 1 was immersed in a $37^{\circ}C$ distilled water for 1 hour. Group 2 was immersed in a $37^{\circ}C$ distilled water for 30 days. Group 3 was subjected to 10,000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$, and the immersion time in each bath was 15 seconds per cycle. Tensile testing was carried out at a cross-head speed of 0.5mm/min and fracture surfaces were examined with scanning electron microscope. The results obtained were summarized as follows; 1. The polyacid-modified composite resins were stronger than the resin-modified glass-ionomer materials, which were much stronger than the conventional glass-ionomer materials. 2. Tensile strengths were slightly increased after aging treatments for 30days. 3. Tensile strengths of conventional glass ionomers were significantly increased after thermal cycling treatment(p<0.01). 4. The highest tensile strength value of 45.4MPa was observed in the Dyract group and the lowest value of 13.3MPa was observed in the Fuji II LC group after the thermal cycling test, and the strengths of polyacid-modified composite groups were significantly higher than those of other groups. 5. The highest characteristic strength value of 48.6MPa was obtained in the Dyract group, however the highest Weibull modulus value of 8.9MPa was obtained in the Compoglass group after thermal cycling test.

  • PDF

PHYSICAL PROPERTIES AND SURFACE TOPOGRAPHY OF ORTHODONTIC STAINLESS STEEL WIRES : COMPARING A NEW KOREAN PRODUCT WITH OTHERS FROM FOREIGN COMPANIES (여러 스테인레스 스틸 호선의 물성 및 표면의 비교)

  • Lee, Sung-Ho;Kim, Tae-Woo;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.149-157
    • /
    • 2001
  • The purpose of this study was to investigate the property of a new Korean stainless steel wire(Jinsung Ind.) comparing with other foreign Products. Five types of stainless steel wires (Standard, Resilient, HI-T of Unitek, Stainless steel of Ormco and Jinsung Ind.) in 0.016x0.022 and 0.019x0.02 were tested to observe for Composition analysis, size difference, tensile properties, flexure bending property, tortion property, surface hardness and surface topography by means of SEM. The findings suggest that: 1. In maximum tensile strength of tensile properties, Unitek Hi-T showed the greatest value, followed by Unitek Resilient, Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Hi-T showed highest value, followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Resilient, Unitek Standard in 0.019x 0.025. 2. In elongation rate, Unitek Standard showed the greatest value, fellowed by Ormco Stainless Steel, Unitek Hi-T, Unitek Resilient, Jinsung Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the highest value, followed by Unitek Standard, Ormco Stainless Steel, Jinsung Stainless Steel, Unitek Resilient in 0.019x0.025. 3. In modulus of elasticity, Jinsung Stainless Steel showed the greatest value, followed by Unitek Hi-T, Unitek Resilient, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Resilient showed the highest value followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Hi-T, Unitek Standard in 0.019x0.025. 4. In bending fatigue test, Jinsung Stainless Steel showed the greatest fracture resistance, followed by Unitek Hi-T, Unitek Standard, Unitek Resilient, Ormco Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the greatest fracture resistance followed by Jinsung Stainless Steel, Unitek Resilient, Unitek Standard, Ormco Stainless Steel in 0.019x0.025. 5. In twist test, Unitek Resilient showed the greatest fracture resistance, followed by Jinsung Stainless Steel, Unitek Hi-7, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Jinsung showed the greatest fracture resistance, followed by Unitek Resilient, Unitek Standard, Ormco Stainless Steel, Unitek Hi-T. 6. In surface topography, every products showed indentation and pitting. Jinsung stainless steel wire showed long thin indentation and relatively smooth surface. Unitek wires showed indentation and pitting and Ormco wire showed a lot of irregular pittings.

  • PDF

Nanomechanical Properties of Lithiated Silicon Nanowires Probed with Atomic Force Microscopy (원자힘 현미경으로 측정된 리튬화 실리콘 나노선의 나노기계적 성질)

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.395-402
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

Preparation of Liquid Crystal Emulsion for Transdermal Delivery of Glycyrrhizic Acid and Physical Characteristics and In Vitro Skin Permeation Studies (글리시리직애씨드의 경피 전달을 위한 액정 에멀젼의 제조와 물리적 특성 및 In Vitro 피부투과 연구)

  • Jung, Jin Woo;Yoo, Cha Young;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.315-324
    • /
    • 2015
  • In this study, we prepared liquid crystal emulsion composed of amphiphilic substance $C_{14-22}$ alcohol, $C_{12-20}$ alkyl glucoside, behenyl alcohol and studied liquid crystal emulsion of properties and in vitro skin permeation. The results of formulation experiments, the clear liquid crystalline structure was observed in the ratio of $C_{14-22}$ alcohol 0.8%, $C_{12-20}$ alkyl glucoside 3.2%, behenyl alcohol 4% in the formulation. The results of physical property measurements, the viscosity of liquid crystal emulsion and O/W emulsion applied as a control group was respectively $1871.26{\sim}1.15Pa{\cdot}s$, $1768.69{\sim}1.14Pa{\cdot}s$ and the shear stress of O/W emulsion was 178.68 ~ 909.18 Pa, that of liquid crystal emulsion was 190.45 ~ 919.38 Pa. The storage modulus of O/W emulsion was 3428.53 ~ 9157.45 Pa, that of liquid crystal emulsion was 4487.82 ~ 8195.59 Pa. The tan (delta) value of O/W emulsion which means a ratio of viscosity to elasticity was 0.43 ~ 0.19, and that of liquid crystal emulsion was 0.23 ~ 0.25. The water content value on the skin for liquid crystal emulsion was significantly higher from 1 h to 6 h compared with that of O/W emulsion and the transepidermal water loss on the skin was significantly superior in skin moisture loss suppression from 30 min to 4 h compared with that of O/W emulsion. The results of skin permeation using glycyrrhizic acid, the result of skin permeation amount of liquid crystal emulsion for 24 h was $64.58{\mu}g/cm^2$, that of O/W emulsion was $37.07{\mu}g/cm^2$, that of butylene glycol solution was $41.05{\mu}g/cm^2$. Hourly permeability results, it is showed that skin penetration effect of the liquid crystal emulsion increases after 8 h. These results suggest that liquid crystal emulsions are effective for skin moisturizing effect and function as potential efficacy ingredient delivery system for the transdermal delivery.

A study on the rock mass classification in boreholes for a tunnel design using machine learning algorithms (머신러닝 기법을 활용한 터널 설계 시 시추공 내 암반분류에 관한 연구)

  • Lee, Je-Kyum;Choi, Won-Hyuk;Kim, Yangkyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.469-484
    • /
    • 2021
  • Rock mass classification results have a great influence on construction schedule and budget as well as tunnel stability in tunnel design. A total of 3,526 tunnels have been constructed in Korea and the associated techniques in tunnel design and construction have been continuously developed, however, not many studies have been performed on how to assess rock mass quality and grade more accurately. Thus, numerous cases show big differences in the results according to inspectors' experience and judgement. Hence, this study aims to suggest a more reliable rock mass classification (RMR) model using machine learning algorithms, which is surging in availability, through the analyses based on various rock and rock mass information collected from boring investigations. For this, 11 learning parameters (depth, rock type, RQD, electrical resistivity, UCS, Vp, Vs, Young's modulus, unit weight, Poisson's ratio, RMR) from 13 local tunnel cases were selected, 337 learning data sets as well as 60 test data sets were prepared, and 6 machine learning algorithms (DT, SVM, ANN, PCA & ANN, RF, XGBoost) were tested for various hyperparameters for each algorithm. The results show that the mean absolute errors in RMR value from five algorithms except Decision Tree were less than 8 and a Support Vector Machine model is the best model. The applicability of the model, established through this study, was confirmed and this prediction model can be applied for more reliable rock mass classification when additional various data is continuously cumulated.

A Study on Microstructure and Mechanical Properties of TiB2-steel Composite Fabricated by Gas Pressure Infiltration Process (가스압 함침 공정으로 제조된 TiB2-steel 금속복합재료의 미세조직 및 기계적 물성에 관한 연구)

  • Lee, Jihye;Lee, Donghyun;Cho, Seungchan;Kwon, Hansang;Lee, Sang-Kwan;Lee, Sang-Bok;Kim, Junghwan
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.248-254
    • /
    • 2022
  • In this study, TiB2-steel composite with high-fractional TiB2 reinforcement was fabricated by gas pressure infiltration process and the microstructure analysis and compressive strength and hardness were evaluated. To elucidate the correlation between microstructure and mechanical properties for fabricated composite, after the compression test of TiB2-steel composite, the fracture surface was analyzed and the fracture behavior on compression test was predicted. As a result of the compression fracture surface analysis, interfacial failure trace between the steel matrix and the reinforcement was observed, and the interface between the steel matrix and the reinforcement was analyzed using TEM. From the result of microstructure analysis on the fabricated composite, it was confirmed that, in addition to TiB2 reinforcement and steel matrix, TiC phase and coarse (Fe,M)2B (M=Cr,Mn) phase were formed. Throughout the thermodynamic calculation, it was confirmed that TiC and (Fe,M)2B can be formed as a stable phase under the process condition. The fabricated TiB2-steel composite had a significantly increased hardness, and the compressive strength and Young's modulus were improved by 3.07 times and 1.95 times, respectively, compared to steel matrix. It seems that the coarse (Fe,M)2B (M=Cr,Mn) phase formed throughout the composite causes the deterioration of mechanical properties, and by controlling the formation of the (Fe,M)2B (M=Cr,Mn) phase, it is judged that the mechanical properties of the TiB2-steel composite can be further improved.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.