• Title/Summary/Keyword: Young modulus

Search Result 1,425, Processing Time 0.026 seconds

Relationship between Dynamic Elastic Modulus and Lithology using Borehole Prospecting (시추공 물리탐사를 이용한 동탄성계수와 암상과의 상관성 분석)

  • Park, Chung-Hwa;Song, Moo-Young;Park, Jong-Oh
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.507-513
    • /
    • 2002
  • To delineate the relationship between dynamic elastic modulus and lithologies, suspension PS logging was applied to Yuseong granite, Paldang banded gneiss, and Sabuk sedimentary rock. P and S wave velocities were also measured for these lithologies. In addition, uniaxial strength and Poisson’s ratio were measured in a laboratory for Yuseong granite and Paldang banded gneiss. In laboratory measurements, P and S wave velocities in Paldang banded gneiss were higher than those in Yuseong granite whereas Poisson’s ratio in Paldang banded gneiss was lower than that in Yuseong granite. This implies that P and S wave velocities correlate reversely with Poisson’s ratio. The dynamic Young modulus obtained from suspension PS logging was high compared to the dynamic bulk modulus and the dynamic shear modulus.

An Assessment of a Resilient Modulus Model by Comparing Predicted and Measured Elastic Deformation of Railway Trackbeds (철도노반의 탄성변위 예측 및 측정을 통한 회복탄성계수 모델 평가)

  • Park, Chul-Soo;Kim, Eun-Jung;Oh, Sang-Hoon;Kim, Hak-Sung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1404-1414
    • /
    • 2008
  • In the mechanistic-empirical trackbed design of railways, the resilient modulus is the key input parameter. This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Presumption of Optimum Concrete Elastic Modulus according to Content of Crushed Stone Powder (폐석분 함유율에 따른 최적의 콘크리트 탄성계수 추정)

  • Park Do-Kyong;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.1 s.19
    • /
    • pp.101-107
    • /
    • 2006
  • While a Study with regard to the measurement on Concrete Strength and the Change of Drying Shrinkage in accordace with Content Ratio of Crushed Stone Powder, it is being analyzed as the result that the strength according to Content Ratio of crushed Stone Powder is somewhat lowering. Accordingly, it is the real situation that the Concrete mixed with Crushed Stone Powder is utilized for non-structural material, not for the structural material. Therefore, this Research willing to furnish the suitable utilizing scheme for construction site as well as practical life by means of conduct the experiment on both Concrete Pressure Strength according to mixture with Crushed Stone Powder and Elastic Modulus, it also presumes the optimum Elastic Modulus Equation after analysis of comparison with common concrete strength. As the result of the experiment, in case of the Content Ratio of Crushed Stone Powder is less than 5%, it did not display a big difference in its both strength and matter-property compare with common concrete. In case of Elastic Modulus, when the Pressure Strength is 50% and 40% respectively, the Elastic Modulus Equation accords very well with the provided condition of Quadratic function, and as the result of the Presumption on Elastic Modulus according to Content of Crushed Stone Powder, in case the Pressure Strength is 50%, Elastic Modulus Equation showed that Error Ratio of Cubic function is at degree of 0.0005%, in case the Pressure Strength is 40%, Elastic Modulus Equation was accorded well with the value of the experimental data likely as the Error Ratio of Cubic function is at the degree around 0.0034%, respectively.

Determination of Deformation Modulus of Rock Mass with Measured Tunnel Displacement (측정된 터널변위에 의한 암반 변형계수의 결정)

  • Park, Jae-Woo;Park, Eun-Gyu;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.655-664
    • /
    • 2007
  • The major geotechnical parameters employed in tunnel design are deformation modulus, Poisson's ratio, friction angle, cohesion, etc. Among these parameters, the deformation modulus is the most significant parameter in tunnel deformation. However, determination of the modulus for rock mass by means of tests is very difficult due to factors affecting including discontinuities and sample size, etc. Thus input values used in the numerical analysis are generally determined by empirical method. A numerical analysis on tunnel was conducted with geotechnical parameters determined through the geological field mapping, laboratory tests, and evaluation of boring data, and some discrepancy between the computed result and tunnel displacements measured was found. Thus, further analyses by changing the deformation modulus of rock mass were performed to determine a relationship between the modulus and computed displacement. Data from two tunnel sites were used to verify the applicability of the proposed method and a correlative equation between deformation modulus and tunnel displacement is proposed. The deformation modulus of rock mass was around 30-40% of young's modulus of intact rock in these cases.

Stochastic Response Analysis of Transmission Tower Subjected to Young's Modulus Variation (송전철탑의 탄성계수의 변이에 따른 확률적 응답변이도)

  • 동원영;정영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.207-215
    • /
    • 1993
  • With the aid of finite element method, this paper deals with the problem of structural response variability of transmission tower subjected to the spatial variability of material properties, Young's modulus herein. The spatial variability of material property are modeled as two-dimensional stochastic field which has an isotropic auto-correlation function. Response variability has been computed based on two numerical techniques, such as the Neumann expansion method in conjunction with the Monte Carlo simulation method. The results by these numerical methods are compared with those by the deterministic approach.

  • PDF

LFWD Deformation Modulus changes which follows in Compaction Energy from Tentative Embankment Section (시험성토 단면에서의 다짐에너지에 따른 LFWD 변형계수의 변화)

  • Choi, Chan-Young;Kim, Hyun-Ki;Bae, Jae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1840-1847
    • /
    • 2008
  • PLT where from site is used mainly with compaction maintenance of quality, CPLT and LFWD, in order to be a Young's modulus of using a direct arrival wave executed a site experiment. According to the roller compaction number of times measured the degree which changes and a promise management aptitude evaluation executed.

  • PDF

Effect of Microstructure on the Prooperties of High Strength Hardened Cement Paste (II) (고강도 시멘트 경화체의 특성에 미치는 미세구조의 영향 (II))

  • 김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1034-1042
    • /
    • 1990
  • Investigation for the preparation of high strength hardened cement paste using ordinary portland cement, hydroxypropyl methyl cellulose(HPMC) with various admixtures was carried out. The cement paste was mixed with 0.1 of water cement ratio by twin roll mill and cured 60 days in humidity chamber. When the quartz powder or white cement was added to the paste, the flexural strength was 900∼1000kg/㎠ and the Young's modulus was 8∼9×105kg/㎠. When the silicafume was added, the flexural strength was 800kg/㎠ and the Young's modulus was 6×105kg/㎠.

  • PDF

Effect of Microstructure on the Characteristics of Fatigue Crack Propagation of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 피로균열진전 특성에 미치는 미세조직의 영향)

  • 도재윤
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.65-69
    • /
    • 2000
  • This study is to investigate the characteristics of fatigue crack propagation in rolled super duplex stainless steel that was changed austenite-ferrite volume fraction by heat treatment. It was used two kinds of specimen the rolling and the transverse directions δ-phase fraction affected sound velocity hardness and Young's modulus. Characteristics of fatigue crack propagation was affected by anisotropy and (δ+γ) phase volume fractions.

  • PDF

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.387-393
    • /
    • 2022
  • This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.

Computational analysis of molecular dynamics results in a fuzzy stability system

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.53-71
    • /
    • 2024
  • Owing to these mechanical properties, carbon nanotubes have the potential to be employed in many future devices and nanostructured materials. As an example, high Young modulus accompanied by their low density, makes them a good choice for reinforcing material in composites. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.