Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.3.387

Dynamic behavior of cracked ceramic reinforced aluminum composite beam  

Selmi, Abdellatif (Prince Sattam bin Abdulaziz University, College of Engineering, Department of Civil Engineering)
Publication Information
Smart Structures and Systems / v.29, no.3, 2022 , pp. 387-393 More about this Journal
Abstract
This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.
Keywords
aluminum; ceramic; composite beam; crack; vibration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Anderson, T.L. (2005), Fracture Mechanics: Fundamental and Applications, (3rd Edition), CRC Press, Taylor and Francis Group, London, UK.
2 Ding, H.Z., Biermann, H. and Hartmann, O. (2002), "A low cycle fatigue model of a short-fiber reinforced 6061 aluminium alloy metal matrix composite", Compos. Sci. Technol., 62, 2189-2199. https://doi.org/10.1016/S0266-3538(02)00160-4   DOI
3 Fernando, L. (2010), "Enhanced Young's modulus of Al-Si alloys and reinforced matrices by co-continuous structures", J. Compos. Mater., 44(6), 739-755. https://doi.org/10.1177/0021998309347649   DOI
4 Han, N.M., Zhang, X.M., Liu, S.D., Ke, B. and Xin, X. (2011), "Effects of pre-stretching and aging on the strength and fracture toughness of aluminium alloy 7050", Mater. Sci. Eng. A, 528(10-11), 3714-3721. https://doi.org/10.1016/j.msea.2011.01.068   DOI
5 Seifi, R. and Khoda-yari, N. (2011), "Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading", Thin-Wall. Struct., 49(12),1504-1516. https://doi.org/10.1016/j.tws.2011.07.010   DOI
6 Rahimian, M., Parvin, N. and Ehsani N. (2011), "The effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite", Mater. Des., 32(2), 1031-1038. https://doi.org/10.1016/j.matdes.2010.07.016   DOI
7 Inegbenebor, A., Bolu, C., Babalola, P., Inegbenebor, A. and Fayomi, O. (2015), "Influence of the grit size of silicon carbide particles on the mechanical and electrical properties of stir casting aluminum matrix composite material", Silicon, 8, 573-578. https://doi.org/10.1007/s12633-015-9305-8   DOI
8 Kok, M. (2005), "Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites", J. Mater. Process. Technol., 161(3), 381-387. https://doi.org/10.1016/j.jmatprotec.2004.07.068   DOI
9 Mohammed A.A., Hayat, S., Tounsi, A., Al-Dulaijan, S.U., AlZahrani, M.M., Alfarabi S, and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., Int. J., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499   DOI
10 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials withmisfitting inclusions", Acta Metallurgica, 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3   DOI
11 Suthar, J. and Patel, K.M. (2018), "Processing issues, machining, and applications of aluminum metal matrix composites", Mater. Manuf. Process., 33, 499-527. https://doi.org/10.1080/10426914.2017.1401713   DOI
12 Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, AA. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637   DOI
13 Wang, Z. Bing, L. and Han, Y. (2012), "Free vibration frequency variation analysis of a cracked aluminum alloy beam under high temperatures", J. Harbin Eng. Univ., 33(3), 320-324.   DOI
14 Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443   DOI
15 Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36, 807-821. https://doi.org/10.1007/s00366-019-00732-1   DOI
16 Yang, D.L., Yiu, Y.L., Li, S.B., Tao, J., Liu, C. and Liu, J.H. (2017), "Fatigue crack growth prediction of 7075 aluminum alloy based on the GMSVR model optimized by the artificial bee colony algorithm", Eng. Computat., 34(1), 1-14. https://doi.org/10.1108/EC-11-2015-0362   DOI
17 Patel, K.M., Pandey, P.M. and Paruchuri, V.R. (2011), "Study on machinabilty of Al2O3 ceramic composite in EDM using response surface methodology", J. Eng. Mater. Technol., 133(2). https://doi.org/10.1115/1.4003100   DOI
18 Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. https://doi.org/10.1016/j.ijmecsci.2014.03.014   DOI
19 Ramnath, B.V., Elanchezhian, C., Jaivignesh, M., Rajesh, S., Parswajinan, C. and Ghias, A.S.A. (2014), "Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites", Mater. Des., 58, 332-338. https://doi.org/10.1016/j.matdes.2014.01.068   DOI
20 Xing, M.Z., Wang, Y.G. and Jiang, Z.X. (2013), "Dynamic fracture behaviors of selected aluminum alloys under three-point bending", Defence Technol., 9(4), 193-200. https://doi.org/10.1016/j.dt.2013.11.002   DOI
21 Gudmundson, P. (1982), "Eigenfrequency changes of structures due to cracks, notches or other geometrical changes", J. Mech. Phys. Solids, 30(5), 339-353. https://doi.org/10.1016/0022-5096(82)90004-7   DOI
22 Rahbar-Ranji, A. and Zarookian, A. (2015), "Ultimate strength of stiffened plates with a transverse crack under uniaxial compression", Ships Offshore Struct., 10(4), 416-425. https://doi.org/10.1080/17445302.2014.942078   DOI
23 Pedersen, K.O., Borvik, T. and Hopperstad, O.S. (2011), "Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions", Mater. Des., 32(1), 97-107. https://doi.org/10.1016/j.matdes.2010.06.029   DOI
24 Abouelmagd, G. (2004), "Hot deformation and wear resistance of P/M aluminium metal matrix composites", J. Mater. Process. Technol., 155-156, 1395-1401. https://doi.org/10.1016/j.jmatprotec.2004.04.223   DOI
25 Ait Yahia, S., Amar, L.H.H., Belabed Z. and Tounsi, A. (2018), "Effect of homogenization models on stress analysis of functionally graded plates", Struct. Eng. Mech., Int. J., 67(5), 527-544. https://doi.org/10.12989/sem.2018.67.5.527   DOI
26 Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6   DOI
27 Chondros, T., Dimarogonas, A. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640   DOI
28 Tatar, C. and Ozdemir, N. (2010), "Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method", Physica B: Phys. Condensed Matter, 405(3), 896-899. https://doi.org/10.1016/j.physb.2009.10.010   DOI
29 Ding, H.Z., Biermann, H. and Hartmann, O. (2003), "Low cycle fatigue crack growth and life prediction of short-fibre reinforced aluminum matrix composites", Int. J. Fatigue, 25(3), 209-220. https://doi.org/10.1016/S0142-1123(02)00114-7   DOI
30 Fu, H.H., Han, K.S. and Song, J.I. (2004), "Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites", Wear, 256(7-8), 705-713. https://doi.org/10.1016/S0043-1648(03)00460-5   DOI
31 Hu, H.T., Li, Y.L. and Wang, J.L. (2013), "Vibration Fatigue Behavior of 2024-T62 Aluminum Alloy Cantilever Beam under Different Vibration State", Key Eng. Mater., 525-526, 253-256. https://doi.org/10.4028/www.scientific.net/KEM.525-526.253   DOI
32 Mehdi, R., Nader, P. and Naser, E. (2010), "the effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite", Mater. Des., 32(2), 1031-1038. https://doi.org/10.1016/j.matdes.2010.07.016   DOI
33 Duan, F., Liu, J., Wang, G. and Yu, Z. (2018), "Dynamic behaviour of aluminium alloy plates with surface cracks subjected to repeated impacts", Ships Offshore Struct., 14(5), 478-491. https://doi.org/10.1080/17445302.2018.1507088   DOI
34 Hu, H.T., Li, Y.L., Suo, T. and Zhao, F. (2015), "Vibration fatigue and fracture performance of aluminum alloy 2024", J. Aeronaut. Mater., 33(4), 78-83. https://doi.org/10.3969/j.issn.1005-5053.2013.4.014   DOI
35 Kim, J. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132   DOI