• 제목/요약/키워드: Young's Modulus of Matrix

검색결과 75건 처리시간 0.029초

초음파 비파괴 시험법을 이용한 탄성계수의 산정을 통한 침엽수 구조용재의 이방성에 관한 기초연구 (Anisotropy of Softwood Structural Lumber Using The Elastic Modulus Determined by The Ultrasonic Nondestructive Method)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권1호
    • /
    • pp.20-27
    • /
    • 2017
  • 본 연구의 목적은 목재의 세 주요 축 방향에 대하여 각 방향별 탄성계수를 비파괴적으로 측정하여 이에 따른 목재의 이방성을 검토해 보고자 하였다. 결점이 없는 SPF (spruce-pine-fir)와 Hem-fir 및 낙엽송재에 대하여 무결점 시험편을 채취하고 각 시험편에 대해 세 방향에서 초음파 속도를 측정한 다음, 이 속도와 각 재료의 밀도를 이용하여 산정된 탄성계수를 비교하였다. 시험 결과 초음파속도 및 탄성계수는 방향별로 목재의 길이방향, 방사방향, 접선방향의 순으로 나타났으며, 밀도가 높을수록 각 방향별 탄성계수가 더 높게 나타났다. 수종 간에 있어서 길이방향의 탄성계수의 차이보다 방사방향, 접선방향의 차이가 더 크게 나타났다. 산정된 탄성계수를 사용하여 재료의 이방성을 비교하여 제시하였으며, 이를 통해 강성매트릭스의 대각선 항을 산정하였다.

Transfer matrix method for solution of FGMs thick-walled cylinder with arbitrary inhomogeneous elastic response

  • Chen, Y.Z.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.469-477
    • /
    • 2018
  • This paper presents a numerical solution for the thick cylinders made of functionally graded materials (FGMs) with a constant Poisson's ratio and an arbitrary Young's modulus. We define two fundamental solutions which are derived from an ordinary differential equation under two particular initial boundary conditions. In addition, for the single layer case, we can define the transfer matrix N. The matrix gives a relation between the values of stress and displacement at the interior and exterior points. By using the assumed boundary condition and the transfer matrix, we can obtain the final solution. The transfer matrix method also provides an effective way for the solution of multiply layered cylinder. Finally, a lot of numerical examples are present.

The effect of gelatin-coating on embryonic stem cells as assessed by measuring Young's modulus using an atomic force microscope

  • Hyunhee Song;Hoon Jang
    • 한국동물생명공학회지
    • /
    • 제38권3호
    • /
    • pp.121-130
    • /
    • 2023
  • Background: Coating a culture plate with molecules that aid in cell adhesion is a technique widely used to produce animal cell cultures. Extracellular matrix (ECM) is known for its efficiency in promoting adhesion, survival, and proliferation of adherent cells. Gelatin, a cost-effective type of ECM, is widely used in animal cell cultures including feeder-free embryonic stem (ES) cells. However, the optimal concentration of gelatin is a point of debate among researchers, with no studies having established the optimal gelatin concentration. Methods: In this study, we coated plastic plates with gelatin in a concentration-dependent manner and assessed Young's modulus using atomic force microscopy (AFM) to investigate the microstructure of the surface of each plastic plate. The adhesion, proliferation, and differentiation of the ESCs were compared and analyzed revealing differences in surface microstructure dependent on coating concentration. Results: According to AFM analysis, there was a clear difference in the microstructure of the surface according to the presence or absence of the gelatin coating, and it was confirmed that there was no difference at a concentration of 0.5% or more. ES cell also confirmed the difference in cell adhesion, proliferation, and differentiation according to the presence or absence of gelatin coating, and also it showed no difference over the concentration of 0.5%. Conclusions: The optimum gelatin-coating for the maintenance and differentiation of ES cells is 0.5%, and the gelatin concentration-mediated microenvironment and ES cell signaling are closely correlated.

Control of Mechanical Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure

  • Kojio, Ken;Nozaki, Shuhei;Takahara, Atsushi;Yamasaki, Satoshi
    • Elastomers and Composites
    • /
    • 제54권4호
    • /
    • pp.271-278
    • /
    • 2019
  • Polyurethane elastomers (PUEs) were synthesized using trans-1,4-bis(isocyanatomethyl) cyclohexane (1,4-H6XDI), poly(oxytetramethylene) glycol, 1,4-butanediol (BD), and 1,1,1-trimethylol propane (TMP). To control the molecular aggregation state and mechanical properties of these PUEs, hard segment contents of 20 and 30 wt% and BD/TMP ratios of 10/0 and 8/2 were chosen. Differential scanning calorimetry and small-angle X-ray scattering measurements revealed that the degree of microphase separation increased with an increase in both hard segment content and BD ratio. The Young's modulus and strain at break of the 1,4-H6XDI-based PUE were 6-20 MPa and 5-15, respectively. Incorporation of 20% TMP as a cross-linking agent into BD increased the melting temperature of the hard segment chains, that is, heat resistance, and decreased the Young's modulus. This could be due to the low density of the physical cross-linking network and the dispersion of hard segment chains in the soft segment matrix in the PUE in the presence of 20% TMP.

분말 ECAP 공정으로 제조된 탄소나노튜브/Cu 나노복합재료의 기계적 성질 (Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing)

  • 윤승채;정영기;김형섭
    • 소성∙가공
    • /
    • 제15권5호
    • /
    • pp.360-365
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.

강성 저하된 적층복합판의 비선형 해석 (Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation)

  • 한성천;박원태;이원홍
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2661-2669
    • /
    • 2010
  • 본 연구에서는 매트릭스가 손상된 적층복합판의 비선형 거동을 분석하기 위한 일차전단변형이론에 기초한 유한요소 정식을 유도하였다. Duan and Yao가 제안한 Matrix 균열의 강성 치환 방법을 적용하여 다방향 강성저하식을 구성하였다. 발생된 Matrix 균열은 탄성계수, 전단탄성계수 및 프아송비의 변화로 표현할 수 있으며, 이를 이용하여 판의 국부 강성 변화를 예측할 수 있다. 가정된 자연변형률 방법을 적용한 쉘요소를 이용하여 면내 및 전단잠김 현상이 발생하지 않았다. 적층복합판의 선형해석은 물론 비선형 해석결과들은 참고문헌의 결과들에 수렴되었다. 매트릭스가 손상된 적층복합판의 해석 결과들은 향후 연구에 비교자료로 활용될 수 있을 것이다.

Effects of ceramic fillers on fracture resistance of barrier ribs of PDP

  • Baek, Se-Kyung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.552-554
    • /
    • 2004
  • Barrier ribs of plasma display panel (PDP) are glass matrix composite reinforced with alumina particles. Mechanical properties of the ribs are very crucial for the improvement in reliability of the panel as the ribs might fracture during transportation and service. In this study, therefore, the effects of filler type and content on the mechanical properties of the ribs were investigated. The fillers used include $Al_2O_3$, $TiO_2$, $ZrO_2$ and fused silica. The content of the filler was changed from 0 to 40 vol.%. The mechanical properties of the ribs measured were hardness, Young's modulus, fracture toughness, and 3-point bending modulus. The fracture toughness evaluated by micro-Vicker's indentation of the composites, in general, was measured to increase with the content of the filler until the sintered density does not decrease significantly. The improvement, however, was dependent on the type of filler employed.

  • PDF

Mechanical characterization of an epoxy panel reinforced by date palm petiole particle

  • Bendada, A.;Boutchicha, D.;Khatir, S.;Magagnini, E.;Capozucca, R.;Wahab, M. Abdel
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.627-634
    • /
    • 2020
  • The past years were marked by an increase in the use of wood waste in civil and mechanical constructions. Date palm waste remains also one of the most solicited renewable and recyclable natural resources in the composition of composite materials. In Algeria, a great amount of this type of plant wastes accumulates every year. In order to make use of this waste, a new wood-epoxy composite material based on date palm petiole particleboard is developed. It makes use of date palm petiole particleboard as reinforcement and epoxy resin as matrix. The size of the particles reinforcement are between 1~3 mm and proportion of reinforcement used is 37%. In this work, experimental and numerical studies are conducted in order to characterize the wood fibre-epoxy plates. Firstly, experimental modal analysis test was carried out to determine Young's modulus of the elaborated material. Then, in order to validate the results, compression test was conducted. Furthermore, additional information about the shear modulus of this material is obtained by performing an experimental modal analysis to extract the first torsional mode. Moreover, a finite element model is developed using ANSYS software to simulate the vibration behaviour of the plates. The results show a good agreement with the experimental modal analysis, which confirms the values of Young's modulus and shear modulus.

PCL-MMT 나노복합재료의 기계적 성질과 생분해에 관한 연구 (A Study on the Mechanical Properties and Biodegradation of PCL-MMT Nanocomposite)

  • 최현국;이영세;박재경
    • 한국산업융합학회 논문집
    • /
    • 제8권1호
    • /
    • pp.5-10
    • /
    • 2005
  • PCL were intercalated into organically modified MMT (PCL-MMT) at $80^{\circ}C$ for 4hrs to prepare the PCL-MMT nanocomposite. PCL-MMT and PCL were mixed mechanically with two-roll mill at $150^{\circ}C$ for 15mins. From the results of XRD and TEM, it were found that PCL-MMT nanocomposite were prepared. And mechanical properties and biodegradation of nanocomposite have been investigated by tensile meter and biodegradability analysis experiment. Because of MMT dispersed homogeneously in PCL matrix, the Young's modulus of the nanocomposite was found to be excellent. But the tensile strength and elongation were decreased as increase of MMT. And MMT dispersed in PCL matrix was almost not affected on the biodegradation of PCL.

  • PDF

에폭시 변성 실리카 나노입자/폴리우레탄-우레아 나노복합체 필름의 제조 및 특성 연구 (Synthesis and Characterization of Epoxy Silane-modified Silica/Polyurethane-urea Nanocomposite Films)

  • 주진;김현석;김진태;유혜진;이재륭;정인우
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.371-378
    • /
    • 2012
  • 3-Glycidoxypropyltrimethoxy silane(GPTMS)으로 친수성의 실리카 나노입자(SNPs)를 소수화하였으며, 소수화된 SNPs를 폴리우레탄-우레아(PUU) 에멀젼과 혼합하여 SNPs/PUU 나노복합체 필름을 제조하였다. 필름 제조 후 PUU 매트릭스 내 SNPs의 함량, SNPs 표면의 소수화 정도, 에폭시 그룹과의 열경화 반응 여부가 필름의 물성에 미치는 영향을 분석하였다. SNP 표면에 도입된 GPTMS의 최대 함량은 $1.99{\times}10^{-6}\;mol/m^2$로 SNP 표면적 기준으로 약 53% 수준이었다. GPTMS에 의한 소수화로 PUU 매트릭스 내 SNPs의 분산성이 향상되었으며, SNPs 함량이 5 wt.%에서 20 wt.%로 증가함에 따라 SNPs/PUU 나노복합체 필름의 유연성은 감소하였으나, 열 안정성은 증가하였다. 특히 Young's modulus와 tensile modulus는 에폭시의 열경화 반응 후에 크게 증가하였다.