• Title/Summary/Keyword: Yolo-Cnn

Search Result 72, Processing Time 0.029 seconds

Object Detection Model Using Attention Mechanism (주의 집중 기법을 활용한 객체 검출 모델)

  • Kim, Geun-Sik;Bae, Jung-Soo;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1581-1587
    • /
    • 2020
  • With the emergence of convolutional neural network in the field of machine learning, the model for solving image processing problems has seen rapid development. However, the computing resources required are also rising, making it difficult to learn from a typical environment. Attention mechanism is originally proposed to prevent the gradient vanishing problem of the recurrent neural network, but this can also be used in a direction favorable to learning of the convolutional neural network. In this paper, attention mechanism is applied to convolutional neural network, and the excellence of the proposed method is demonstrated through the comparison of learning time and performance difference at this time. The proposed model showed that both learning time and performance were superior in object detection based on YOLO compared to models without attention mechanism, and experimentally demonstrated that learning time could be significantly reduced. In addition, this is expected to increase accessibility to machine learning by end users.

Research Trends on Related to Artificial Intelligence for the Visually Impaired : Focused on Domestic and Foreign Research in 1993-2020 (시각장애인을 위한 인공지능 관련 연구 동향 : 1993-2020년 국내·외 연구를 중심으로)

  • Bae, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.688-701
    • /
    • 2020
  • In this study, a total of 68 domestic and international papers were selected from 1993 to August 2020 in order to examine the research trends related to artificial intelligence for the visually impaired. The papers were compared and analyzed by the number of papers published by year, research method, research topic, keyword analysis status, research type, and implementation method. As a result of the study, the number of papers during the study period seemed to increase steadily. But in the case of domestic research, It can be seen that it has become active since 2016. As for research methods, development research accounted for 89.7% of both domestic and foreign research. Keywords was in Visually Impaired, Deep Learning, and Assistive Device order in domestic research. And it was in Visually Impaired, Deep learning, Artificial intelligence order in foreign research. There was a difference in the frequency of words. Research type were Design, development and implementation both in domestic and foreign. Implementation method were in System 13.2%, Solution 7.4%, App. 4.4% order in domestic research, and it was in System 32.4%, App. 13.2%, Device 7.4% order in foreign research. As for the applied technology of the implementation method, were in YOLO 2.7%, TTS 2.1%, Tensorflow 2.1% order in domestic research, and it was used in CNN 8.0%, TTS 5.3%, MS-COCO 4.3% order in foreign research. The purpose of this study was to compare and analyze the trends of artificial intelligence-related research targeting the visually impaired, to immediately know the current status of domestic and foreign research, and to present the direction of artificial intelligence research for the visually impaired in the future.

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

A Study on Improved Label Recognition Method Using Deep Learning. (딥러닝을 활용한 향상된 라벨인식 방법에 관한 연구)

  • Yoo, Sung Geun;Cho, Sung Man;Song, Minjeong;Jeon, Soyeon;Lim, Song Won;Jung, Seokyung;Park, Sangil;Park, Gooman;Kim, Heetae;Lee, Daesung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.447-448
    • /
    • 2018
  • 라벨인식과 같은 광학 문자 인식은 영상처리를 활용한 컴퓨터 비전의 대표적인 연구분야이다. 본 연구에서는 딥러닝 기반의 라벨인식 시스템을 고안하였다, 생산 라인에 적용되는 라벨인식 시스템은 인식 속도가 중요하기 때문에 기존의 R-CNN기반의 딥러닝 신경망보다 월등히 빠른 오브젝트 검출 시스템 YOLO를 활용하여 문자를 학습 및 인식 시스템을 개발하였다. 본 시스템은 기존 시스템에 근접하는 문자인식 정확도를 제공하고 자동으로 문자영역을 검출 가능하며, 라벨의 인쇄불량을 판독하도록 하였다. 또한 개발, 배포, 적용이 한번에 가능한 프레임워크를 통하여 생산현장에서 발생하는 다양한 이미지 처리에 활용될 전망이다.

Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride (딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현)

  • Son, Seung-Yong;Kim, Young Mok;Choi, Doo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).

Development of a Single-Arm Robotic System for Unloading Boxes in Cargo Truck (간선화물의 상자 하차를 위한 외팔 로봇 시스템 개발)

  • Jung, Eui-Jung;Park, Sungho;Kang, Jin Kyu;Son, So Eun;Cho, Gun Rae;Lee, Youngho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.417-424
    • /
    • 2022
  • In this paper, the developed trunk cargo unloading automation system is introduced, and the RGB-D sensor-based box loading situation recognition method and unloading plan applied to this system are suggested. First of all, it is necessary to recognize the position of the box in a truck. To do this, we first apply CNN-based YOLO, which can recognize objects in RGB images in real-time. Then, the normal vector of the center of the box is obtained using the depth image to reduce misrecognition in parts other than the box, and the inner wall of the truck in an image is removed. And a method of classifying the layers of the boxes according to the distance using the recognized depth information of the boxes is suggested. Given the coordinates of the boxes on the nearest layer, a method of generating the optimal path to take out the boxes the fastest using this information is introduced. In addition, kinematic analysis is performed to move the conveyor to the position of the box to be taken out of the truck, and kinematic analysis is also performed to control the robot arm that takes out the boxes. Finally, the effectiveness of the developed system and algorithm through a test bed is proved.

Implementation of Deep Learning-Based Vehicle Model and License Plate Recognition System (딥러닝 기반 자동차 모델 및 번호판 인식 시스템 구현)

  • Ham, Kyoung-Youn;Kang, Gil-Nam;Lee, Jang-Hyeon;Lee, Jung-Woo;Park, Dong-Hoon;Ryoo, Myung-Chun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.465-466
    • /
    • 2022
  • 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출 모델인 YOLOv4를 활용하여 차량의 모델과 번호판인식 시스템을 제안한다. 본 논문에서 제안하는 시스템은 실시간 영상처리기술인 YOLOv4를 사용하여 차량모델 인식과 번호판 영역 검출을 하고, CNN(Convolutional Neural Network)알고리즘을 이용하여 번호판의 글자와 숫자를 인식한다. 이러한 방법을 이용한다면 카메라 1대로 차량의 모델 인식과 번호판 인식이 가능하다. 차량모델 인식과 번호판 영역 검출에는 실제 데이터를 사용하였으며, 차량 번호판 문자 인식의 경우 실제 데이터와 가상 데이터를 사용하였다. 차량 모델 인식 정확도는 92.3%, 번호판 검출 98.9%, 번호판 문자 인식 94.2%를 기록하였다.

  • PDF

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.

A Study on Pagoda Image Search Using Artificial Intelligence (AI) Technology for Restoration of Cultural Properties

  • Lee, ByongKwon;Kim, Soo Kyun;Kim, Seokhun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2086-2097
    • /
    • 2021
  • The current cultural assets are being restored depending on the opinions of experts (craftsmen). We intend to introduce digitalized artificial intelligence techniques, excluding the personal opinions of experts on reconstruction of such cultural properties. The first step toward restoring digitized cultural properties is separation. The restoration of cultural properties should be reorganized based on recorded documents, period historical backgrounds and regional characteristics. The cultural properties in the form of photographs or images should be collected by separating the background. In addition, when restoring cultural properties most of them depend a lot on the tendency of the restoring person workers. As a result, it often occurs when there is a problem in the accuracy and reliability of restoration of cultural properties. In this study, we propose a search method for learning stored digital cultural assets using AI technology. Pagoda was selected for restoration of Cultural Properties. Pagoda data collection was collected through the Internet and various historical records. The pagoda data was classified by period and region, and grouped into similar buildings. The collected data was learned by applying the well-known CNN algorithm for artificial intelligence learning. The pagoda search used Yolo Marker to mark the tower shape. The tower was used a total of about 100-10,000 pagoda data. In conclusion, it was confirmed that the probability of searching for a tower differs according to the number of pagoda pictures and the number of learning iterations. Finally, it was confirmed that the number of 500 towers and the epochs in training of 8000 times were good. If the test result exceeds 8,000 times, it becomes overfitting. All so, I found a phenomenon that the recognition rate drops when the enemy repeatedly learns more than 8,000 times. As a result of this study, it is believed that it will be helpful in data gathering to increase the accuracy of tower restoration.

A Study on Object Recognition Technique based on Artificial Intelligence (인공지능 기반 객체인식 기법에 관한 연구)

  • Yang Hwan Seok
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.3-9
    • /
    • 2022
  • Recently, in order to build a cyber physical system(CPS) that is a technology related to the 4th industry, the construction of the virtual control system for physical model and control circuit simulation is increasingly required in various industries. It takes a lot of time and money to convert documents that are not electronically documented through direct input. For this, it is very important to digitize a large number of drawings that have already been printed through object recognition using artificial intelligence. In this paper, in order to accurately recognize objects in drawings and to utilize them in various applications, a recognition technique using artificial intelligence by analyzing the characteristics of objects in drawing was proposed. In order to improve the performance of object recognition, each object was recognized and then an intermediate file storing the information was created. And the recognition rate of the next recognition target was improved by deleting the recognition result from the drawing. In addition, the recognition result was stored as a standardized format document so that it could be utilized in various fields of the control system. The excellent performance of the technique proposed in this paper was confirmed through the experiments.