• Title/Summary/Keyword: Yielding displacement

Search Result 184, Processing Time 0.033 seconds

An Experimental Study on Performance Evaluation of Hysteretic Steel Slit Damper (슬릿형 강재이력 감쇠장치의 성능평가를 위한 실험연구)

  • Choi, Ki-Sun;Lee, Hyun-Jee;Kim, Min-Sun;You, Young-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • This study performed experimental validation of the hysteretic steel slit damper's basic and dependent characteristics, which should be considered for the design. The basic characteristic of the steel slit damper is used for determining design properties of non-linear analysis, such as yielding strength, yielding displacement, elastic stiffness and post-yielding stiffness. In order to evaluate dependent characteristics of the hysteretic steel slit damper, repeated deformation capacity with respect to the displacement, velocity and aspect ratio of the damper was evaluated. In this study, steel slit damper, which is widely used in Korea, was considered. The slit dampers with 55kN and 240kN of yielding strength were produced and tested. It was concluded that the slit damper's hysteresis behavior was affected by the dependent characteristics: displacement, velocity and aspect ratio. In other words, the steel slit damper's behavior was stable within limit displacement, and aspect ratio of the strut affected repeated deformation capacity of the damper subjected to large deformation. In addition, it was observed that the repeated deformation capacity abruptly decreased at the high speed range (${\geq}60mm/sec$). Furthermore, the experimental results were evaluated with the criterion of the damping device specified in ASCE7-10.

Concepts on Deformation Dependent Strut-and-Tie Models (변형을 고려한 스트럿-타이 모델)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.209-212
    • /
    • 2005
  • This paper presents, basic concepts on deformation models for D-regions critical to shear. Strut-and-tie models are used to construct for deformation estimation at yielding and ultimate deformation. A generic: strut-and-tie model is proposed to investigate deformation patterns and failure mode identification. Superposition of the basic models enables us to explain deformation limits of arch action and truss action. Displacement at yielding is assessed by consideration of deformation of reinforcing steel only while the ultimate displacement is calculated by limits of ultimate strain of concrete in compression and failure mechanisms.

  • PDF

A Lateral Behavior Characteristics of Group Concrete Pile by Model Tests (모형실험에 의한 무리 콘크리트 말뚝의 수평거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un;Kim, Jin-Bok;Lim, Dong-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.57-64
    • /
    • 2012
  • The lateral behavior characteristics of concrete group pile under the lateral load were examined by the laboratory model tests in this study. Piles were socketed 1D(D : pile diameter) in the concrete block, and model tests were executed on $2{\times}3$ group piles, of which the length were 11D, 15D and 20D. All results of loading tests under each condition was presented by the lateral load-displacement curves, and the displacements in the ground under the lateral loads were measured. As a results of model tests, as the ratio of pile length/diameter(L/D) was decreased, the yielding load and the lateral displacement at that load were increased. The yielding load was evaluated as the load at lateral displacement of 15 mm. The yielding loads at the pile length of 11D, 15D and 20D were 11.7, 6.2kN and 3.4kN. The lateral displacements of pile in the ground under each condition were measured linearly and the failure occurred at the location where the piles were socketed in concrete block.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

The Lateral Load Capacity of Bored-Precast Pile Depending on Injecting Ratio of Cement Milk in Sand (사질토 지반에서 시멘트밀크 주입비에 따른 매입말뚝의 수평지지력)

  • Hong, Won-Pyo;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.99-107
    • /
    • 2013
  • In order to investigation Lateral bearing capacity of bored-precast pile, we carried out the analysis of the relationship between Lateral load and horizontal displacement using the result of horizontal pile load test. The six piles injected cement milk of 50%, 70% and 100% of the embedded length of pile were used in the horizontal pile load test. The horizontal displacement, yielding load and horizontal bearing capacity are mainly affected by The injecting ratio of cement milk (injected length of cement milk/embedded length of pile). As the injecting ratio of cement milt is increased, the starting point of horizontal displacement in piles become close to the ground surface and the amount of horizontal displacement is decreased. Also, the horizontal bearing capacity and yielding load are highly increased with increasing the ration of cement milk. The horizontal bearing capacity and yielding load of bored pile with 1 of cement milk ratio are about two or three times those of pile with 0.5 of cement milk ratio.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

The Load-Displacement Relationships of R/C Coupling Beams using Strut-and-tie Models (스트럿-타이 모델을 이용한 철근 콘크리트 연결보의 하중-변위관계)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Strut-and-Tie Models for RC Flexural Members under Cyclic Loading (스트럿-타이 모텔을 이용한 RC 휨부재의 주기적 거동에 관한 연구)

  • 이수곤;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.453-458
    • /
    • 2001
  • This paper presents the procedure to find the hysteresis loop of RC member using a modified strut-and-tie model. The forces and displacements at critical points, that are initial yielding point, target displacement point, unloading elastic limit, and reloading point after pinching, are investigated with the strut-and-tie models. Using bond-slip relationship, the elastic behavior of tie element is determined. The plastic flow behavior after flexural yielding is expressed by changing the location of longitudinal strut. Determination of pinching effect completes the initial hysteresis loop, assuming that the behavior of the opposite direction is symmetrical form.

  • PDF

A negative stiffness inerter system (NSIS) for earthquake protection purposes

  • Zhao, Zhipeng;Chen, Qingjun;Zhang, Ruifu;Jiang, Yiyao;Pan, Chao
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.481-493
    • /
    • 2020
  • The negative stiffness spring and inerter are both characterized by the negative stiffness effect in the force-displacement relationship, potentially yielding an amplifying mechanism for dashpot deformation by being incorporated with a series tuning spring. However, resisting forces of the two mechanical elements are dominant in different frequency domains, thus leading to necessary complementarity in terms of vibration control and the amplifying benefit. Inspired by this, this study proposes a Negative Stiffness Inerter System (NSIS) as an earthquake protection system and developed analytical design formulae by fully utilizing its advantageous features. The NSIS is composed of a sub-configuration of a negative stiffness spring and an inerter in parallel, connected to a tuning spring in series. First, closed-form displacement responses are derived for the NSIS structure, and a stability analysis is conducted to limit the feasible domains of NSIS parameters. Then, the dual advantageous features of displacement reduction and the dashpot deformation amplification effect are revealed and clarified in a parametric analysis, stimulating the establishment of a displacement-based optimal design framework, correspondingly yielding the design formulae in analytical form. Finally, a series of examples are illustrated to validate the derived formulae. In this study, it is confirmed that the synergistic incorporation of the negative stiffness spring and the inerter has significant energy dissipation efficiency in a wide frequency band and an enhanced control effect in terms of the displacement and shear force responses. The developed displacement-based design strategy is suitable to utilize the dual benefits of the NSIS, which can be accurately implemented by the analytical design formulae to satisfy the target vibration control with increased energy dissipation efficiency.