• Title/Summary/Keyword: Yield traits

Search Result 616, Processing Time 0.024 seconds

Comparison of NERICA and Asian rice among traits relevant to drought resistance in the field and the effects of compost

  • Fujii, Michihiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.335-335
    • /
    • 2017
  • Recently NERICA (New Rice for Africa) was developed by a crossing of African rice (Oryza glaberrima Steud.) and Asian rice (Oryza sativa L.) in West Africa, and is considered to be drought resistant, but drought resistance of NERICA and differences between Asian rice are not clarified enough. In this research, NERICA (four cultivars and two lines), Asian rice (three cultivars and sativa parent of NERICA) and African rice (glaberrima parent of NERICA) were cultivated in the field in Shizuoka University under drought and traits of each cultivar and line relevant to drought resistance, stomatal conductance by porometer, soil water content of individual depths by TDR method, SPAD values by SPAD meter and leaf thickness by micrometer, were measured and compared with dry matter production and yield. Effects of compost were also compared among sativa parent, one NERICA cultivar and two NERICA lines. Glaberrima parent showed highest top dry weight. One NERICA line, one drought resistant Asian rice cultivar and sativa parent, showed higher top dry weight and yield (ear weight) than other Asian rice cultivars and NERICA cultivars and line tested. Compost tended to increase top dry weight and yield in one of NERICA line and sativa parent. But in one NERICA cultivar and line, top dry weight and yield were not increased. In one of Asian rice, one of NERICA line and sativa parent that showed high top dry weight and yield, stomatal conductance was high. On the contrary the glaberrima parent and in other NERICA cultivars and line it was low. In sativa parent compost increased stomatal conductance but in NERICA cultivar and lines it was not. Among cultivars and lines that showed high top dry weight and yield sativa parent and one of NERICA line SPAD value and leaf thickness were high but in one of Asian rice and glaberrima parent they were low. Cultivar and line differences in yield and top dry weight among Asian rice and NERICA were significantly correlated with those in stomatal conductance ($r=0.778^{**}$ and $r=0.654^*$, respectively) and those in leaf thickness ($r=0.600^*$ and $r=0.640^*$, respectively). In Asian rice cultivars average soil water content was significantly correlated with yield ($r=0.886^*$) but in NERICA cultivars and lines it was not significant correlated (r= -0.256). Cultivar and line differences in leaf thickness were significantly correlated with SPAD value ($r=0.773^{**}$). In Asian rice cultivars it was significantly correlated ($r=0.962^{**}$), but in NERICA cultivars and lines it was not significantly correlated (r=0.559). Asian rice cultivars tended to consume soil water to increase yield but in NERICA cultivars and lines the tendency was not clear. Correlation between SPAD value and leaf thickness was different between Asian rice and NERICA cultivars and lines, and in Asian rice cultivars it was significantly correlated but in NERICA cultivars and lines it was not significant. Importance of maintaining high stomatal conductance by high leaf thickness was clarified.

  • PDF

Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

  • Zaabza, Hafedh Ben;Gara, Abderrahmen Ben;Rekik, Boulbaba
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.636-642
    • /
    • 2018
  • Objective: The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods: A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results: All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from $0.78{\pm}0.01$ to $0.82{\pm}0.03$, between the first and second parities, from $0.73{\pm}0.03$ to $0.8{\pm}0.04$ between the first and third parities, and from $0.82{\pm}0.02$ to $0.84{\pm}0.04$ between the second and third parities. Conclusion: These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.

QTL Identification Using Combined Linkage and Linkage Disequilibrium Mapping for Milk Production Traits on BTA6 in Chinese Holstein Population

  • Hu, F.;Liu, J.F.;Zeng, Z.B.;Ding, X.D.;Yin, C.C.;Gong, Y.Z.;Zhang, Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1261-1267
    • /
    • 2010
  • Milk production traits are important economic traits for dairy cattle. The aim of the present study was to refine the position of previously detected quantitative trait loci (QTL) on bovine chromosome 6 affecting milk production traits in Chinese Holstein dairy cattle. A daughter design with 918 daughters from 8 elite sire families and 14 markers spanning the previously identified QTL region were used in the analysis. We employed a combined linkage and linkage disequilibrium analysis (LDLA) approach with two options for calculating the IBD probabilities, one was based on haplotypes of all 14 markers (named Method 1) and the other based on haplotypes with sliding windows of 5 markers (named Method 2). For milk fat yield, the two methods revealed a highly significant QTL located within a 6.5 cM interval (Method 1) and a 4.0 cM interval (Method 2), respectively. For milk protein yield, a highly significant QTL was detected within a 3.0 cM interval (Method 1) or a 2.5 cM interval (Method 2). These results confirmed the findings of our previous study and other studies, and greatly narrowed down the QTL positions.

Heritability Estimated Using 50K SNPs Indicates Missing Heritability Problem in Holstein Breeding

  • Shin, Donghyun;Park, Kyoung-Do;Ka, Sojoeng;Kim, Heebal;Cho, Kwang-hyeon
    • Genomics & Informatics
    • /
    • v.13 no.4
    • /
    • pp.146-151
    • /
    • 2015
  • Previous studies in Holstein have shown 35% to 51.8% heritability in milk production traits, such as milk yield, fat, and protein, using pedigree data. Other studies in complex human traits could be captured by common single-nucleotide polymorphisms (SNPs), and their genetic variations, attributed to chromosomes, are in proportion to their length. Using genome-wide estimation and partitioning approaches, we analyzed three quantitative Holstein traits relevant to milk production in Korean Holstein data harvested from 462 individuals genotyped for 54,609 SNPs. For all three traits (milk yield, fat, and protein), we estimated a nominally significant (p = 0.1) proportion of variance explained by all SNPs on the Illumina BovineSNP50 Beadchip ($h^2_G$). These common SNPs explained approximately most of the narrow-sense heritability. Longer genomic regions tended to provide more phenotypic variation information, with a correlation of 0.46~0.53 between the estimate of variance explained by individual chromosomes and their physical length. These results suggested that polygenicity was ubiquitous for Holstein milk production traits. These results will expand our knowledge on recent animal breeding, such as genomic selection in Holstein.

Genetic study of quantitative traits supports the use of Guzera as dual-purpose cattle

  • Carrara, Eula Regina;Peixoto, Maria Gabriela Campolina Diniz;Veroneze, Renata;Silva, Fabyano Fonseca e;Ramos, Pedro Vital Brasil;Bruneli, Frank Angelo Tomita;Zadra, Lenira El Faro;Ventura, Henrique Torres;Josahkian, Luiz Antonio;Lopes, Paulo Savio
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.955-963
    • /
    • 2022
  • Objective: The aim of this study was to estimate genetic parameters for 305-day cumulative milk yield and components, growth, and reproductive traits in Guzerá cattle. Methods: The evaluated traits were 305-day first-lactation cumulative yields (kg) of milk (MY305), fat (FY305), protein (PY305), lactose (LY305), and total solids (SY305); age at first calving (AFC) in days; adjusted scrotal perimeter (cm) at the ages of 365 (SP365) and 450 (SP450) days; and adjusted body weight (kg) at the ages of 210 (W210), 365 (W365), and 450 (W450) days. The (co)variance components were estimated using the restricted maximum likelihood method for single-trait, bi-trait and tri-trait analyses. Contemporary groups and additive genetic effects were included in the general mixed model. Maternal genetic and permanent environmental effects were also included for W210. Results: The direct heritability estimates ranged from 0.16 (W210) to 0.32 (MY305). The maternal heritability estimate for W210 was 0.03. Genetic correlation estimates among milk production traits and growth traits ranged from 0.92 to 0.99 and from 0.92 to 0.99, respectively. For milk production and growth traits, the genetic correlations ranged from 0.33 to 0.56. The genetic correlations among AFC and all other traits were negative (-0.43 to -0.27). Scrotal perimeter traits and body weights showed genetic correlations ranging from 0.41 to 0.46, and scrotal perimeter and milk production traits showed genetic correlations ranging from 0.11 to 0.30. The phenotypic correlations were similar in direction (same sign) and lower than the corresponding genetic correlations. Conclusion: These results suggest the viability and potential of joint selection for dairy and beef traits in Guzerá cattle, taking into account reproductive traits.

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources (질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향)

  • Tae-Heon Kim;Suk-Man Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (-0.44) and TGW (-0.44), and TGW displayed a negative correlation with PRG (-0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.

Selection response and estimation of the genetic parameters for multidimensional measured breast meat yield related traits in a long-term breeding Pekin duck line

  • Xu, Yaxi;Hu, Jian;Zhang, Yunsheng;Guo, Zhanbao;Huang, Wei;Xie, Ming;Liu, Hehe;Lei, Chuzhao;Hou, Shuisheng;Liu, Xiaolin;Zhou, Zhengkui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1575-1580
    • /
    • 2018
  • Objective: This study was conducted to estimate the genetic parameters and breeding values of breast meat related traits of Pekin ducks. Selection response was also determined by using ultrasound breast muscle thickness (BMT) measurements in combination with bosom breadth (BB) and keel length (KL) values. Methods: The traits analyzed were breast meat weight (BMW), body weight (BW), breast meat percentage (BMP) and the three parameters of breast meat (BB, KL, and BMT). These measurements were derived from studying 15,781 Pekin ducks selected from 10 generations based on breast meat weight. Genetic parameters and breeding value were estimated for the analysis of the breeding process. Results: Estimated heritability of BMW and BMP were moderate (0.23 and 0.16, respectively), and heritability of BW was high (0.48). Other traits such as BB, KL, and BMT indicated moderate heritability ranging between 0.11 and 0.28. Significant phenotypic correlations of BMW with BW and BMP were discovered (p<0.05), and genetic correlations of BMW with BW and BMP were positive and high (0.83 and 0.66, respectively). It was noted that BMW had positive correlations with all the other traits. Generational average estimated breeding values of all traits increased substantially over the course of selection, which demonstrated that the ducks responded efficiently to increased breast meat yield after 10 generations of breeding. Conclusion: The results indicated that duck BMW had the potential to be increased through genetic selection with positive effects on BW and BMP. The ultrasound BMT, in combination with the measurement of BB and KL, is shown to be essential and effective in the process of high breast meat yield duck breeding.

Phenotypic Diversity among 575 Cultivated Soybean Landraces Collected from Different Provinces in Korea: A Multivariate Analysis

  • Kebede Taye Desta;Yu-Mi Choi;Young-ah Jeon;Myoung-Jae Shin;Hye-myeong Yoon;Wang XiaoHan;Hyeon-seok Oh;Young-Wan Na;Ho-cheol Ko;Na-young Ro;JungYoon Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.97-110
    • /
    • 2024
  • This study investigated 575 cultivated soybean landraces from different provinces in Korea, using 17 key agromorphological traits. The studied soybeans showed wide variations in both qualitative and quantitative traits, signifying the existence of genetic diversity. The standardized Shannon-Weaver index (H') ranged from 0.3 to 1.0, with seed-related traits having an H' value higher than 0.7. Similarly, quantitative traits showed significant variation, with the coefficient of variation ranging from 7.2% for days to maturity (DM) to 62.3% for the number of pods per plant (PPP). In terms of province, the Gyeongsangbuk-do and Gyeongsangnam-do accessions differed from the other accessions, with higher proportions of green and yellow seed coats and lower proportion of black hilums. Gyeongsangnam-do accessions also showed early maturation and flowering but had the lowest average one-hundred seeds weight (HSW). In contrast, Jeollanam-do accessions flowered and matured late but had the highest average seed weight per plant (SWPP). Hierarchical cluster analysis grouped the soybeans into 12 clusters, and further statistical analysis showed significant variations in all quantitative traits (p < 0.05). Principal component analysis grouped the accessions based on the clusters. DM, PPP, HSW, and SWPP were identified as major contributors to the observed variance along the axes of the first two principal components. Correlation analysis revealed significant associations between maturity and yield-related traits. Based on their relative performance, 37 promising accessions were identified. Overall, this study highlights the diversity of recently cultivated Korean soybean landraces and provides opportunities for future metabolomic and genomic studies.

Direct Selection Response to Growth and Correlated Response to Lactation Traits in Black Bengal Goats

  • Amin, M.R.;Husain, S.S.;Islam, A.B.M.M.;Saadullah, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.899-904
    • /
    • 2001
  • A field trial on selection for increased live weight in Black Bengal (BB) goat was conducted over two generations. Parents of both sexes were selected (mass selection) based on mature body weight criteria set against age. A parallel randomly mated line was maintained to compare the response (R) of selection at birth. 3, 6, 9 and 12 months of age in both generations. Lactation yield (LY), average per day yield (APDY) and lactation length (LL) were evaluated in the selected line in comparison to randombreds as a result of correlated response. Live weights were significantly improved at onward bir:th in first generation and only at birth in second generation. Improvements (%) in live weight at 3, 6. 9 and 12 months in first generation were 17.6, 18.4, 16.6, and 12.0 at birth in second generation. Significant correlated R were found in LY and APDY. Results suggest that there may be a positive relationship between live weight and lactational traits in BB goats of Bangladesh. It was also concluded that such a field scheme can be effectively used for genetic improvement of goats in subsistence farming, at least for short term gain.

Application of genomics into rice breeding

  • Ando, Ikuo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.13-13
    • /
    • 2017
  • By the progress of genome sequencing, infrastructures for marker-assisted breeding (MAB) of rice came to be established. Fine mapping and gene isolation have been conducted using the breeding materials derived from natural variations and artificial mutants. Such genetic analysis by the genome-wide dense markers provided us the knowledge about the many genes controlling important traits. We identified several genes or quantitative trait loci (QTL) for heading date, blast resistance, eating quality, high-temperature stress tolerance, and so on. NILs of each gene controlling heading date contribute to elongate the rice harvest period. Determination of precise gene location of blast resistance gene pi21, allowed us to overcome linkage drag, co-introduction of undesirable eating quality. We could also breed the first practical rice cultivar in Japan with a brown planthopper resistance gene bph11 in the genetic back-ground of an elite cultivar. Discovery of major and minor QTLs for good eating quality allowed us to fine-tune of eating quality according to the rice planting area or usage of rice grain. Many rice cultivars have bred efficiently by MAB for several traits, or by marker-assisted backcross breeding through chromosome segment substitution lines (CSSLs) using genetically diverse accessions. We are also systematically supporting the crop breeding of other sectors by MAB or by providing resources such as CSSLs. It is possible to pyramid many genes for important traits by using MAB, but is still difficult to improve the yielding ability. We are performing a Genomic Selection (GS) for improvement of rice biomass and grain yield. We are also trying to apply the genome editing technology for high yield rice breeding.

  • PDF