References
- Swalve HH. Theoretical basis and computational methods for different test-day genetic evaluation methods. J Dairy Sci 2000;83:1115-24. https://doi.org/10.3168/jds.S0022-0302(00)74977-0
- Santos DJA, Peixoto MGCD, Borquis RRA, et al. Genetic parameters for test-day milk yield, 305-day milk yield, and lactation length in Guzerat cows. Livest Sci 2013;152:114-9. https://doi.org/10.1016/j.livsci.2012.12.012
- Naserkheil M, Miraie-Ashtiani SR, Nejati-Javeremi A, Son A, Lee D. Random regression models using Legendre polynomials to estimate genetic parameters for test-day milk protein yields in Iranian Holstein dairy cattle. Asian-Australas J Anim Sci 2016;29:1682-7. https://doi.org/10.5713/ajas.15.0768
- Shaeffer LR, Jamrozik J, Kistemaker GJ, Van Doormaal BJ. Experience with a test-day model. J Dairy Sci 2000;83:1135-44. https://doi.org/10.3168/jds.S0022-0302(00)74979-4
- De Ross APW, Harbers AGF, De Jong G. Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in the Netherlands. J Dairy Sci 2004;87:2693-701. https://doi.org/10.3168/jds.S0022-0302(04)73396-2
- Druet T, Jaffrezic F, Boichard D, Ducrocq V. Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. J Dairy Sci 2003;86:2480-90. https://doi.org/10.3168/jds.S0022-0302(03)73842-9
- Muir BL, Kistemaker G, Jamrozik J, Canavesi F. Genetic parameters for a multiple-trait multiple-lactation random regression test-day model in Italian Holsteins. J Dairy Sci 2007;90: 1564-74. https://doi.org/10.3168/jds.S0022-0302(07)71642-9
- Pool MH, Janss LLG, Meuwissen THE. Genetic parameters of Legendre polynomials for first parity lactation curves. J Dairy Sci 2000;83:2640-9. https://doi.org/10.3168/jds.S0022-0302(00)75157-5
- Haile-Mariam M, Goddard ME, Bowman PJ. Estimates of genetic parameters for daily somatic cell count of Australian dairy cattle. J Dairy Sci 2001;84:1255-64. https://doi.org/10.3168/jds.S0022-0302(01)74587-0
- Shaeffer LR. Application of random regression models in animal breeding. Livest Prod Sci 2004;86:35-45. https://doi.org/10.1016/S0301-6226(03)00151-9
- Caccamo M, Veerkamp RF, De Jong G, et al. Variance components for test-day milk, fat, and protein yield, and somatic cell score for analyzing management information. J Dairy Sci 2000; 91:3268-76.
- Hammami H, Rekik B, Soyeurt H, et al. Accessing genotype by environment interaction using within-and across-country test-day random regression sire models. J Anim Breed Genet 2009;126:366-77. https://doi.org/10.1111/j.1439-0388.2008.00794.x
- Misztal I, Tsuruta S, Strabel T, et al. BLUPF90 and related programs (BGF90). Proceedings 7th World Congress on Genetics Applied to Livestock Production. Montpellier, France: CD- ROM communication 2002;28:07.
- Pereira RJ, Ayres DR, El Faro L, et al. Genetic parameters for production traits of dairy Gyr (Bos indicus) Holstein cattle estimated with a random regression model. Livest Sci 2013; 158:24-31. https://doi.org/10.1016/j.livsci.2013.10.003
- Mayeres P, Stoll J, Bormann J, Reents R, Gengler N. Prediction of daily milk, fat, and protein production by a random regression test-day model. J Dairy Sci 2004;87:1925-33. https://doi.org/10.3168/jds.S0022-0302(04)73351-2
- Druet T, Jaffrezic F, Ducrocq V. Estimation of genetic parameters for test-day records of dairy traits in the first three lactations. Genet Sel Evol 2005;37:257-71. https://doi.org/10.1186/1297-9686-37-4-257
- Miglior F, Gong W, Wang Y, et al. Genetic parameters of production traits in Chinese Holsteins using a random regression test-day model. J Dairy Sci 2009;92:4697-706. https://doi.org/10.3168/jds.2009-2212
- Ben Zaabza H, Ben Gara A, Hammami H, et al. Genetic parameters of reproductive traits in Tunisian Holsteins. Arch Anim Breed 2016;59:209-13. https://doi.org/10.5194/aab-59-209-2016
- Weigel KA, Rekaya R, Zwald NR, Fikse WF. International genetic evaluation of dairy sires using a multiple-trait model with individual animal performance records. J Dairy Sci 2001; 84:2789-95. https://doi.org/10.3168/jds.S0022-0302(01)74734-0
- Ojango JMK, Pollot GE. The relationship between Holstein bull breeding values for milk yield derived in both the UK and Kenya. Livest Prod Sci 2002;74:1-12. https://doi.org/10.1016/S0301-6226(01)00282-2
- Huquet B, Leclerc H, Ducrocq V. Characterization of French dairy farm environment from herd-test-day profiles. J Dairy Sci 2012;95:4085-98. https://doi.org/10.3168/jds.2011-5001
- Gebreyohannes G, Koonawootrittriron S, Elzo MA, Suwanasopee T. Estimation of genetic parameters using a random regression monthly test-day model in an Ethiopian dairy cattle population. Agric Nat Resour 2016;50:64-70.
- Misztal I, Strabel T, Jamrozik J, Mantysaari EA, Meuwissen THE. Strategies for estimating the parameters needed for different test-day models. J Dairy Sci 2000;83:1125-34. https://doi.org/10.3168/jds.S0022-0302(00)74978-2
- Strabel T, Jamrozik J. Genetic analysis of milk production traits of Polish Black and White using large-scale random regression test-day models. J Dairy Sci 2006;89:3152-63. https://doi.org/10.3168/jds.S0022-0302(06)72589-9
- Ben Gara A, Rekik B, Bouallegue M. Genetic parameters and evaluation of the Tunisian dairy cattle population for milk yield by Bayesian and BLUP analyses. Livest Prod Sci 2006;100: 142-9. https://doi.org/10.1016/j.livprodsci.2005.08.012
- Aguilar I, Misztal I, Tsuruta S. Genetic components of heat stress for dairy cattle with multiple lactations. J Dairy Sci 2009; 92:5702-11. https://doi.org/10.3168/jds.2008-1928
- Hammami H, Vandenplas J, Vanrobays ML, et al. Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J Dairy Sci 2015;98:1-13. https://doi.org/10.3168/jds.2014-8433
- Hammami H, Rekik B, Soyeurt H, Ben Gara A, Gengler N. Genetic parameters for Tunisian Holstein using a test-day random regression model. J Dairy Sci 2008;91:2118-26. https://doi.org/10.3168/jds.2007-0382
Cited by
- Comparison and estimation of different linear and nonlinear lactation curve submodels in random regression analyses on dairy cattle vol.101, pp.3, 2018, https://doi.org/10.1139/cjas-2020-0085