• Title/Summary/Keyword: Yield electric field

검색결과 128건 처리시간 0.022초

Rheology of Hollow Polyaniline Gutarate Suspension Under DC Electric Field

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.36-38
    • /
    • 2008
  • The electrical and rheological behavior of the hollow polyaniline glutarate suspension in silicone oil was investigated. Hollow polyaniline glutarate suspension showed a typical ER response (Bingham flow behavior) under a DC electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 0.95 power on the electric field. The experimental results for the hollow polyaniline glutarate suspension behaved as an ER fluid.

Fundamental Study on Performance Experiment of ER Clutch (ER클러치의 성능실험에 관한 기초적 연구)

  • 김도태;장성철;염만오;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.66-71
    • /
    • 2001
  • In this work, an ER clutch has been constructed and its characteristics have been evaluated by adapting an electro-rheological fluid(ERF) as an operating medium. ER fluids are suspensions which show an abrupt increase in rheological properties under electric fields. An ER clutch system using ER fluid is a new conception device because an apparent viscosity of ER fluid can be changed by apply an electric field. As a first, Bingham properties of ER fluids are experimentally distilled as a function of electric field. We use the disk type ER clutch in which the ER fluid fills the annular space between a pair of coaxial disk electrodes and experiment results show that the measured revolution per minute was increased with the increase of the electric field. The ER fluid used in the present study consists of weight fraction 35% in zeolite suspended silicone oil.

  • PDF

Synthesis and Electrorheological Effect of the Suspensions Composed of Nano Sized Hollow Polyaniline Derivatives

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • 제7권1호
    • /
    • pp.18-21
    • /
    • 2006
  • The electrorheology of hollow PANI derivative suspensions in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI derivative susepnsions showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI succinate suspension exhibited an electric field power of 0.67. On the basis of the experimental results, the newly synthesized hollow PANI derivative suspensions were found to be an anhydrous ER fluid.

Electrical and Rheological Properties of Chitosan Malonate Suspension

  • Choi, Ung-su
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.14-17
    • /
    • 2003
  • The electrical and rheological properties of a chitosan malonate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively, The chitosan malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress fur the suspension exhibited a linear dependence on the volume fraction and an electric field power of 1.88. On the basis of the experimental results, the newly synthesized chitosan malonate suspension was found to be an anhydrous ER fluid.

Apparent Viscosity Properties of Electro-Rheological Fluid by Using Rotational Viscometer (회전식 점도계를 이용한 ERF의 겉보기 점도 특성)

  • 장성철;이진우;김태형;박종근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.196-201
    • /
    • 2001
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. Therefore, there are many practical applications using the ER fluids. ER effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. The electrical and rheological properties of starch based ER fluid were reported. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields, particle concetrations, and temperatures. The electric field is applied by high voltage DC power supply, The outer cup is connected to positive electrode(+) and the bob becomes ground(-). And the temperatures the viscosity(or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to 200s$^{-1}$ in 2 minutes. This thesis presents Bingham properties of ER fluids subjected to temperature variations. The temperature dependence of the viscosity was determined for ER fluids consisting of 35 weight % starch particles in automatic transmission oil.

  • PDF

A Study on Bingham Characteristics of Particle Dispersive Electro-Rheological Fluid (입자분산계 ER유체의 빙햄특성 고찰)

  • 장성철;이선의;김태형;박종근;염만오
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.178-183
    • /
    • 2000
  • Electrorheological(ER) effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. The electrical and rheological properties of zeolite and starch based ER fluid were reported. The ER fluids were constructed by mixing zeolite and starch power with two different dielectric oils. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields, particle concetrations, and temperatures. The electric field is applied by high voltage DC power supply. The outer cup is connected to positive electrode(+) and the bob becomes ground(-). And the temperatures the viscosity(or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to $200s^{-1}$ in 2 minutes.

  • PDF

A Fundamental Study on Bingham Characteristics of Electro-Rheological Fluids for Control System Application (제어 시스템 적용을 위한 ER유체의 빙햄 특성에 관한 기초적 연구)

  • Jang, Sung-Cheol;Jeong, Young-Bin;Jang, Gil-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제3권3호
    • /
    • pp.86-92
    • /
    • 2004
  • This paper describes the properties of temperature-viscosity characteristics of hydrous and anhydrous electro-rheological fluids containing starch and titanium particle in silicone oil ER effects arise from electrostatic forces between the starch particles and titanium particles dispersed to the electrically insulating silicone oil induced when electric field is applied ER fluids under electric field control have been found to provide resonable estimates of ER fluid viscosity variation characteristics. Yield shear stress of the ER fluids were measured the couette cell type rheometer as a function of electrlc fields. The outer cup is connected to positive electrode(+) and bob becomes ground(-). The electrie field is applied by high voltage DC power supply. In this experiment shear rates were increased from 0 to 200 $s^{-1}$ in 2 minutes. The ER fluid's viscosity change is very small and stable at the temperature range of $40^{\circ}C$ to $60^{\circ}C$. Therefore, applications of a new ER fluid to control systems application are suitable.

  • PDF

Bingham Properties and Damping Force Control of an ER Fluid under Squeeze Mode (압착모드하에서 ER유체의 빙햄특성 및 댐핑력 제어)

  • 홍성룡;최승복
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제19권11호
    • /
    • pp.37-45
    • /
    • 2002
  • This paper presents the field-dependent Bingham characteristics and damping force control of an electro-rheological (ER) fluid under squeeze mode operation. The squeeze force of the ER fluid due to the imposed electric field is analyzed and an appropriate size of the disk-type electrode is devised. On the basis of the theoretical model of the ER fluid under squeeze mode operation, the yield stress and response speed of the ER fluid are distilled from the time responses of squeeze force to the step electric potentials. Measured squeeze forces under various excitation conditions are compared with the predicted ones from Bingham model and time constant obtained at the transient response test. In addition, the controllability of the field-dependent damping force of the ER fluid under squeeze mode is experimentally demonstrated by implementing simple PID controller.

Growth of ZnO Nanorod with High-quality Assisted by an External Electric Field (외부 전계 인가를 통한 고품질 ZnO 나노로드 성장)

  • Son, Min-Kyu;Seo, Hyun-Woong;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Byung-Man;Park, Song-Yi;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제61권11호
    • /
    • pp.1641-1645
    • /
    • 2012
  • In this study, the ZnO nanorod is grown on the seed layered glass substrate by applying an external electric field to fabricate the ZnO nanorod with the high quality and to increase the yield of the ZnO nanorod. It is possible to grow the definite and clear hexagonal ZnO nanorod as the cathode of the high voltage is connected to the side of the seed layered glass substrate and the anode is connected to the opposite side because more $Zn^{2+}$ ions are located around the ZnO seed layer and are accumulated easily due to the external electric field. As a result, it is succeeded to fabricate the definite hexagonal ZnO nanorod having better structural characteristics by applying the external electric field during the growth process. Therefore, it is demonstrated that the external electric field is effective to fabricate the high quality ZnO nanorod without changing any composition of the ZnO nanorod.

Domain Switching Toughening of Ferroelectric Ceramics Subjected to Electric Fields (전기장을 받는 강유전체 세라믹의 분역회전 인성화)

  • Jeong, Kyoung-Moon;Beom, Hyeon-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제27권4호
    • /
    • pp.577-584
    • /
    • 2003
  • A crack with growth in ferroelectric ceramics under purely electric loading is analyzed. The crack tip stress intensity factor for the growing crack under small-scale conditions is evaluated by employing the model of nonlinear domain switching. The crack tip stress intensity factor increases or decreases with crack growth, depending on the electrical nonlinear behavior and the direction of an applied electric field. It is shown that the ferroelectric material can be either toughened or weakened as the crack grows. The steady state crack growth in ferroelectric ceramics is also discussed.