Browse > Article
http://dx.doi.org/10.5370/KIEE.2012.61.11.1641

Growth of ZnO Nanorod with High-quality Assisted by an External Electric Field  

Son, Min-Kyu (부산대 공대 전자전기공학과)
Seo, Hyun-Woong (부산대 공대 전자전기공학과)
Kim, Soo-Kyoung (부산대 공대 전자전기공학과)
Hong, Na-Yeong (부산대 공대 전자전기공학과)
Kim, Byung-Man (부산대 공대 전자전기공학과)
Park, Song-Yi (부산대 공대 전자전기공학과)
Kim, Hee-Je (부산대 공대 전자전기공학과)
Publication Information
The Transactions of The Korean Institute of Electrical Engineers / v.61, no.11, 2012 , pp. 1641-1645 More about this Journal
Abstract
In this study, the ZnO nanorod is grown on the seed layered glass substrate by applying an external electric field to fabricate the ZnO nanorod with the high quality and to increase the yield of the ZnO nanorod. It is possible to grow the definite and clear hexagonal ZnO nanorod as the cathode of the high voltage is connected to the side of the seed layered glass substrate and the anode is connected to the opposite side because more $Zn^{2+}$ ions are located around the ZnO seed layer and are accumulated easily due to the external electric field. As a result, it is succeeded to fabricate the definite hexagonal ZnO nanorod having better structural characteristics by applying the external electric field during the growth process. Therefore, it is demonstrated that the external electric field is effective to fabricate the high quality ZnO nanorod without changing any composition of the ZnO nanorod.
Keywords
ZnO nanorod; External electric field; ZnO aqueous solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Lu, I. Dajani, R. J. Knize, "Ultrafast laser assisted fabrication of ZnO nanorod arrays for photon detection applications", Applied Surface Science, Vol. 253, pp. 7851-7854, 2007.   DOI   ScienceOn
2 O. Lupan, G. Chai, L. Chow, "Fabrication of ZnO nanorod-based hydrogen gas nanosensor", Microelectronics Journal, Vol. 38, pp. 1211-1216, 2007.   DOI   ScienceOn
3 L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G. R. Patzke, G. Chen, "Humidity sensors based on ZnO/TiO2 core-shell nanorod arrays with enhanced sensitivity", Sensors and Actuators B: Chemical, Vol. 159, pp. 1-7, 2011.   DOI   ScienceOn
4 C. Y. Chou, J. S. Huang, C. H. Wu, C. Y. Lee, C. F. Lin, "Lengthening the polymers solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells", Solar Energy Materials and Solar Cells, Vol. 93, pp. 1608-1612, 2009.   DOI   ScienceOn
5 Y. Tang, X. Hu, M. Chen, L. Luo, B. Li, L. Zhang, "CdSe nanocrystal sensitized ZnO core-shell nanorod array films: Preparation and photovoltaic properties", Electrochimica Acta, Vol. 54, pp. 2742-2747, 2009.   DOI   ScienceOn
6 R. S. Kumar, P. Sudhagar, P. Matheswaran, R. Sathyamoorthy, Y. S. Kang, "Influence of seed layer treatment on ZnO growth morphology and their device performance in dye-sensitized solar cells", Materials Science and Engineering: B, Vol. 172, pp. 283-288, 2010.   DOI   ScienceOn
7 Q. Huang, L. Fang, X. Chen, M. Saleem, "Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells", Journal of Alloys and Compounds, Vol. 509, pp. 9456-9459, 2011.   DOI   ScienceOn
8 Y. M. Lee, H. W. Yang, "Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells", Journal of Solid State Chemistry, Vol. 184, pp. 615-623, 2011.   DOI   ScienceOn
9 R. S. Mane, W. J. Lee, H. M. Pathan, S. H. Han, "Nanocrystalline TiO2/ZnO thin films: Fabrication and application to dye-sensitized solar cells", Journal of Physical Chemistry B, Vol. 109, pp. 24254-24259, 2005.   DOI   ScienceOn
10 W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, "Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods", Applied Physics Letters, Vol. 80, pp. 4232-4234, 2002.   DOI   ScienceOn
11 T. Hirate, S. Sasaki, W. Li, H. Miyashita, T. Kimpara, T. Satoh, "Effect of laser-ablated impurities on aligned ZnO nanorods grown by chemical vapor deposition", Thin Solid Films, Vol. 487, pp. 35-39, 2005.   DOI   ScienceOn
12 K. Prabakar, H. Kim, "Growth control of ZnO nanorod density by sol-gel method", Thin Solid Films, Vol. 518, pp. e136-e138, 2010.   DOI   ScienceOn
13 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, "Catalytic growth of zinc oxide wires by vapor transport", Advanced Materials, Vol. 13, pp. 113-116, 2001.   DOI   ScienceOn
14 Y. Sun, G. M. Fuge, M. N. R. Ashfold, "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods", Chemical Physics Letters, Vol. 396, pp. 21-26, 2004.   DOI   ScienceOn
15 Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solutions", Chemistry of Materials, Vol. 17, pp. 1001-1006, 2005.   DOI   ScienceOn
16 M. Guo, P. Diao, S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions", Journal of Solid State Chemistry, Vol. 178, pp. 1864-1873, 2005.   DOI   ScienceOn
17 H. Gao, G. Fang, M. Wang, N. Liu, L. Yuan, C. Li, L. Ai, J. Zhang, C. Zhou, S. Wu, X. Zhao, "The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells", Materials Research Bulletin, Vol. 43, pp. 3345-3351, 2008.   DOI   ScienceOn
18 M. Wang, C. H. Ye, Y. Zhang, H. X. Wang, X. Y. Zeng, L. D. Zhang, "Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueuous solution method", Journal of Materials Science: Materials in Electronics, Vol. 19, pp. 211-216, 2008.   DOI