• Title/Summary/Keyword: Yeongsan River Basin

Search Result 106, Processing Time 0.032 seconds

Community Size Structure of Zooplankton Assemblages in 29 Lentic Ecosystems on the Youngsan-Seomjin River Basin (2010~2011) (영산강, 섬진강 유역권내 29개 정수생태계의 동물플랑크톤 군집 크기 구조(2010~2011))

  • Kim, Hyun-Woo;La, Geung-Hwan;Park, Jong-Hwan;Song, Hyo-Jeong;Hwang, Kyung-Sub;Lim, Byung-Jin;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • This study compares the abundance and community structure of zooplankton organisms from the littoral and pelagic regions, and considers particularly trophic levels vs. zooplankton abundances. Zooplankton samples, collected every 3 months over a year from 2010 to 2011 at 29 temperate lakes and reservoirs, which belong to two different river basins (Youngsan and Seomjin River). The spatial pattern of rotifers was similar to that of total zooplankton abundance. This reflected the fact that rotifers strongly dominated the zooplankton community. There were considerable spatial variations in total zooplankton abundance (ANOVA, p<0.01), while there were no significant differences both in littoral and pelagic regions in abundance of zooplankton (ANOVA, p=0.205). The mean abundance of zooplankton in eutrophic systems was much higher than that of mesotrophic systems, while significant difference in number of species and diversity index were not shown in both trophic systems.

Seasonal Investigation of Natural Organic Matters from Yeongsan River Basin by Fluorescence Spectroscopy (영산강 수계 자연유기물질의 계절별 형광특성 연구)

  • Lee, Dong-Jin;Chon, Kang-Min;Jung, Soo-Jung;Kim, Sang-Don;Lee, Kyung-Hee;Hwang, Tae-Hee;Hwang, Dong-Jin;Lim, Byung-Jin;Cho, Jae-Weon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.42-51
    • /
    • 2012
  • This study investigated the characteristics of natural organic matter (NOM) with general water characteristics (pH, DO, electrical conductivity, BOD, COD, TN, TP, Chl-$a$, DOC, $UV_{254}$, SUVA) and the 3D fluorescence excitation-emission matrix (FEEM) in the Yeongsan River basin. FEEM was used to classify protein-like and fulvic & humiclike substances with fluorescence intensity in the matrix of excitation and emission wavelength. The concentration of BOD, COD, TN, electrical conductivity and DOC in the region of Gwangju city (Gwangju sewage treatment plant: GJS, Gwangjucheon: GJC, Gwangju 2: GJ2) was relatively higher than the upper reaches and lower reaches of the Yeongsan River basin. SUVA in most sites was lower than 3 L $mg^{-1}\;m^{-1}$ as the hydrophilic substances, except Damyang (DY) in the upper reaches of Yeongsan river was higher than 3 L $mg^{-1}\;m^{-1}$ as the hydrophobic substances during winter and autumn. In the FEEM investigation the fulvic and humic substances were found in most sites, and in sites regarding Gwangju city (GJS, GJC, GJ2) during winter and GJC in summer, protein-like substances were found. The trend of fluorescence intensities from the upper reaches to the lower reaches in most sites corresponded to that regarding the concentration of water characteristics (BOD, COD, TN, DOC). That is why the region of Gwangju city (GJS, GJC, GJ2) was relatively higher. This results were an equivalent trend to those of fluorescence index (FI) in most sites, and the higher FIs in the sites of Gwangju city indicate more microbial-derived substances due to enormous effluent organic matters (EfOM) from huge Gwangju sewage treatment plants.

The Influence of Land Use on Water Quality in the Tributary of the Yeongsan River Basin (영산강수계 소하천 유역의 토지이용이 하천수질에 미치는 영향 분석)

  • Jung, Jae-Woon;Lim, Byung-Jin;Cho, So-Hyun;Choi, Jin-Hee;Song, Kwang-Duck;Ha, Don-Woo;Kim, Hae-Sung;Park, Seung-Ho;Hwang, Tae-Hee;Jung, Soo-Jung;Lee, Dong-Jin;Kim, Kap-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.412-419
    • /
    • 2012
  • This study assessed the impacts of land use types on water quality in the tributary of the Yeongsan river basin. Temporal changes in water quality parameters (BOD, COD, TOC, T-P, T-N, SS) were investigated. 13 water sampling sites were selected; they were then collected and analyzed according to the standard method. The results showed that water quality parameters of the study sites ranged as follows : BOD, from 0.3 to $21.9mg\;L^{-1}$ (mean $3.3mg\;L^{-1}$); COD, from 1.0 to $38.0mg\;L^{-1}$ ($6.4mg\;L^{-1}$); TOC, from 0.6 to $20.0mg\;L^{-1}$ ($4.5mg\;L^{-1}$); T-P, from 0.009 to $1.973mg\;L^{-1}$ ($0.144mg\;L^{-1}$); T-N, from 0.6 to $17.1mg\;L^{-1}$ (mean $3.5mg\;L^{-1}$); SS, from 0.3 to $292.0mg\;L^{-1}$ ($20.3mg\;L^{-1}$). Generally, the paddy and upland dominated region had high concentrations of water quality parameters, whereas the forest dominated region had low concentrations. In addition, water quality parameters were positively correlated with paddy and upland, whereas the parameters were negatively correlated with forest. The result implies that paddy and upland are the dominant factors leading to stream pollution in the study sites, while a higher percentage of forest area contributes to improved water quality. Therefore, it is important to manage paddy and upland in order achieve efficient management of water quality.

A Study on the Spatial Distribution and Diffusion of Rice-paddy Weeding Songs Using the Geomorphic Elements in Jeolla-do: A Case of Arishigona, Sanaji and Bang-gae (지형요소를 활용한 전라도 논매기소리의 공간분포와 전파에 관한 연구: 아리시고나 류, 산아지 곡, 방게 류를 사례로)

  • Yoon, Hye-Yeon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.71-85
    • /
    • 2021
  • In this study, the effect on the spatial distribution and diffusion of Arishigona, Sanaji and Bang-gae appearing in Jeolla-do was analyzed using geomorphic elements. Based on result, the AriShigona is distributed in the western plains of the Yeongsan River basin and around from the Noryeong mountain range to Mudeung mountain range, the Sanaji is mainly diffused in the middle and upper parts of the Seomjin River and the lower parts of the Mangyeong River, Dongjin River and the Boseong River basin, and the Bang-gae is found to be distributed in the Seomjin River and the upper part of the Yeongsan River basin. Although the cultural centers of these Rice-paddy Weeding Songs are different but they appear to have a similar distribution pattern in Jeolla-do. This is used as a diffusion path of cultural elements by crossing lineaments in various directions and serving bridge role at the same time. However, in the region where the lineaments do not intersect, the continuity of Rice-paddy Weeding Songs are relatively low, which are considered to be reflected in the spatial distribution and propagation of the sound due to the influence of the drain network rather than the lineament. The results of this study can provide basic data for spatial distribution of Rice-paddy Weeding Songs, and regionality and cultural division by diffusion characteristics.

Re-evaluation of comprehensive flood management plan for the Yeongsan river basin using Robust Decision Making (로버스트 의사결정을 이용한 영산강유역 종합치수계획 재평가)

  • Kang, Dong-Heon;Kim, Young-Oh;Park, Junehyeong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.99-109
    • /
    • 2017
  • This research adopted a Robust Decision Making framework to re-evaluate four alternative strategies proposed by the Comprehensive Flood Management Plan for the Yeongsan River Basin report (MLTM, 2005) considering uncertainties of future floods under condition of climate change. To reflect the uncertainties, multiple sets of future flood scenarios were used with three uncertainty factors: the change in rainfall intensity based on the RCP climate change scenarios and the changes in the temporal and the spatial flood distributions. With combinations of these factors, 216 plausible flood scenario sets were generated and the performances of the four alternatives under different future states were evaluated. From the results, the most robust alternative among the strategies was identified. Moreover, the key factors which made the tested alternatives poor were discovered through assessment of the uncertainty factors. This information can provide detailed insights to decision makers and can be utilized to overcome alternatives' potential vulnerabilities by modifying the strategy to be more robust.

Evaluation of stream flow and water quality changes of Yeongsan river basin by inter-basin water transfer using SWAT (SWAT을 이용한 유역간 물이동량에 따른 영산강유역의 하천 유량 및 수질 변동 분석)

  • Kim, Yong Won;Lee, Ji Wan;Woo, So Young;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1081-1095
    • /
    • 2020
  • This study is to evaluate stream flow and water quality changes of Yeongsan river basin (3,371.4 km2) by inter-basin water transfer (IBWT) from Juam dam of Seomjin river basin using SWAT (Soil and Water Assessment Tool). The SWAT was established using inlet function for IBWT between donor and receiving basins. The SWAT was calibrated and validated with 14 years (2005 ~ 2018) data of 1 stream (MR) and 2 multi-functional weir (SCW, JSW) water level gauging stations, and 3 water quality stations (GJ2, NJ, and HP) including data of IBWT and effluent from wastewater treatment plants of Yeongsan river basin. For streamflow and weir inflows (MR, SCW, and JSW), the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), and percent bias (PBIAS) were 0.69 ~ 0.81, 0.61 ~ 0.70, 1.34 ~ 2.60 mm/day, and -8.3% ~ +7.6% respectively. In case of water quality, the R2 of SS, T-N, and T-P were 0.69 ~ 0.81, 0.61 ~ 0.70, and 0.54 ~ 0.63 respectively. The Yeongsan river basin average streamflow was 12.0 m3/sec and the average SS, T-N, and T-P were 110.5 mg/L, 4.4 mg/L, 0.18 mg/L respectively. Under the 130% scenario of IBWT amount, the streamflow, SS increased to 12.94 m3/sec (+7.8%), 111.26 mg/L (+0.7%) and the T-N, T-P decreased to 4.17 mg/L (-5.2%), 0.165 mg/L (-8.3%) respectively. Under the 70% scenario of IBWT amount, the streamflow, SS decreased to 11.07 m3/sec (-7.8%), 109.74 mg/L (-0.7%) and the T-N, T-P increased to 4.68 mg/L (+6.4%), 0.199 mg/L (+10.6%) respectively.

A Study on the Land Purchase Priority Measurement of the Riparian Areas in Yeongsan and Seomjin River Basin - Focusing on the Riparian Areas of the Juam Lake - (영산강·섬진강수계 수변구역 토지매수 우선순위 산정에 관한 연구 -주암호 수변구역을 사례로 -)

  • Shim, Yun-Jin;Cha, Jin-Yeol;Park, Yong-Su;Lee, Dong-Jin;Seo, Yun-Hee;Hong, Jin-Pyo;Cho, Dong-Gil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.173-184
    • /
    • 2014
  • Riparian areas are significant functional grounds for inhabiting ecological system on the river such as the self-regulation of the water quality and the foundation of important corridors. For such functional device to operate, consecutive land purchase scheme that prioritizes targeted areas with high pollutant load rate imposes sustainable development of the ecological riparian belt. The purpose of this study is focused on measuring the methodology for selecting land purchse order before establishing riparian belt in accordance with pollution loading estimation and the basin approach. The Yeongsan and Seomjin river which includes targeted areas of the land purchase have been classified into the large-medium-small(standard basin) influence areas based on their catchment rage, which than sub-divided the research area of Juam lake by 38 small basins and 223 units. Small basins with the high pollution load rates have been assessed as the first prioritized targets. For the second priority, the condition of the point pollutant sources, original area of the targets, original restored area were concerned. The final decision of the land purchase order targeted only those within 50 meter range from the basin. To validate the accumulated data, the on-site investigation went along the targeted zones, which the result shows that all prioritized areas included both point and non-point pollutant sources, and had not a small originally restored areas.

Long-term distribution trend analysis of largemouth bass (Micropterus salmoides), based on National Fish Database, and the ecological risk assessments (전국자연환경조사 자료를 이용한 배스(Micropterus salmoides) 시공간 분포 분석 및 생태위해성 평가)

  • Kim, Jeong Eun;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.207-217
    • /
    • 2021
  • Using the data from the national survey of fish, we determined the population size and the distribution of Micropterus salmoides, which is a translocated species into the aquatic ecosystem of Korea. . The spatial concentration of this species was determined by performing an optimized hot spot analysis. After determining potential invasiveness and risk assessment, we measured the disturbance of biodiversity in the aquatic ecosystem. The result of distribution analysis indicates that the population of M. salmoides was concentrated in the major basins of Han river, Geum river, Nakdong river, and Yeongsan-Seomjin river, including the Jeju island. In particular, Nakdong river basin showed the highest appearance rate. On the contrary, Yeongsan-Seomjin river basin showed the lowest appearance rate. The Nakdong river and the Nakdong river basin were the areas with the high spatial concentration of M. salmoides. On the other hand, only Han river basin and Geum river basin had the lowest spatial concentration. The fish invasiveness screening kit(FISK) was used to assess M. salmoides, which inhabited a broad region of aquatic ecosystem: the assessment score was 31.0, indicating its 'highly invasive' nature. Our study aims to encourage research that improves the biodiversity and the conservation of M. salmoides in a priority area.

Appearance of Fish Species Based on the Weir's Density in the Four River Systems in Korea (국내 4대강 수계 하천의 보 밀도에 따른 어류 출현종 분석)

  • Moon, Woon Ki;Noh, Da Hye;Yoo, Jae Sang;Lim, O Young;Kim, Myoung Chul;Kim, Ji Hye;Lee, Jeong Min;Kim, Jai Ku
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.93-99
    • /
    • 2022
  • It was confirmed that the fish diversity decreased with increasing index of weir's density (IWD) in the four river systems. The IWD showed difference with watershed, it was high in the Nakdong River (NDR). Both two river systems of Gum River (GUR) and Yeongsan River (YSR) were similar, whereas relatively lower density observed in the Han River (HNR) system. A result of 2-Dimensional Kolmogorov-Smirnov (2-DKS) as a nonparametic test showed different threshold values affecting fish diversity with the river systems. The p-values based on Dmax, were significantly different at 0.05 level (except for YSR). The threshold values affecting fish diversity were also different with watershed. The values were 1.6/km of the HNR, 1.3/km of the NDR, and 2.3/km of the GUR, respectively. The fish diversity was decreased when IWD is over threshold values. The IWD of total 404 rivers (about 33%) among 1,217 surveyed in this study showed above threshold value. These rivers should be considered first for evaluating river continuity. The IWD and threshold value suggested in this study would be useful for selecting a stream priority for river connectivity study.

The Distribution and Behavior of Medically-derived 131I in the Yeongsan River Basin (영산강수계 의료기원 방사성요오드(131I) 핵종의 분포 및 거동평가)

  • Kang, Tae-Woo;Han, Young-Un;Park, Won-Pyo;Song, Kwang-Duck;Hwang, Soon-Hong;Kang, Tae Gu;Kim, Kyung Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.243-250
    • /
    • 2018
  • BACKGROUND: Recently, the use of $^{131}I$ for diagnosis and treatment of thyroid cancer has been increasing, and the radionuclide is continuously released into aquatic ecosystem. This study was carried out to investigate the $^{131}I$ concentrations in mainstreams, tributaries, and sewage wastewater treatment plants (SWTPs) of the Yeongsan River Basin and to identify their origins from the assessment of behaviors in the rivers. METHODS AND RESULTS: The water samples were collected from 19 sites including mainstreams (13), tributaries (4) and SWTPs (2). The $^{131}I$ concentration was measured using a gamma-ray spectrometry with a HPGe detector. The $^{131}I$ in SWTPs was detected mostly in the discharged effluent at the sampling sites. However, from the surface water of the rivers, $^{131}I$ was found only at two sites from each sampling period of the first (MS4 and MS10) and the second half (MS4 and MS7) of the year 2017. The concentrations of $^{131}I$ in the effluent discharged from SWTPs were in the range of 0.0870 to 3.87 Bq/L for SWTP1, and $^{131}I$ in the river revealed that it was not detected in the upper streams of the mainstreams and tributaries, while continuous detection was found in the SWTPs and downstream sites affected by the effluent. However, the concentration of $^{131}I$ decreased downstream, eventually becoming undetectable. Such behavior was closely related to the behavior found in the SWTPs. CONCLUSION: These results indicated that medically-derived $^{131}I$ was discharged to the river via sewage effluent at the SWTPs. It is necessary to evaluate the influence of aquatic ecosystems through continuous monitoring in the future.