• Title/Summary/Keyword: Yellow-Signal Dilemma

Search Result 8, Processing Time 0.018 seconds

A Study of the Intersection in Reduce Car Accidents for Traffic Signal Light to Supplement (교차로 사고 감소를 위한 신호등 보완에 관한 연구)

  • Park, In-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Three types of traffic signal systems are two-color signal systems that flash red and green and are mainly used on crosswalks, next, three-color equalization systems mainly used at T-shaped intersections with red and yellow lights and a green arrow, and third, four-color intersections that generally have red, yellow and green colored lights and a green arrow. In what is known as the "dilemma zone" area, a driver collects information that influences his/her decision whether to stop, speed, tail, interrupt, or violate a traffic light, depending on the intersection width, vehicle speed, cognitive response time and reference yellow signal time. This study examined the impact of changes in the length of the dilemma zone areas based on changes in yellow signal times, the speed of the intersection passages, and signal lamps. Downward adjustments of 50km/h and 60km/h affected yellow signal time. The yellow signal time increased by 0.1 to 2.3[s] due to this effect and the dilemma zone area increased by 1.22 to 26[m]. The driver of the dilemma zone could quickly decide to reduce the time remaining of the straight (3color, 4color) green signal to reduce the potential of a traffic accident at the intersection traffic. Safe entry of red (LED palm) and left-turn signals for entering flashed at the intersection and operated at midnight.

Evaluation of a Traffic Light System Focusing on Autonomic Nervous System Activity for Overcoming Yellow Signal Dilemma (황색신호 딜레마 극복을 위한 자율신경계 활성도 중심의 신호체계 평가)

  • Jo, Hyung-Seok;Kim, Kyu-Beom;Ahn, Seok-Huen;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.3
    • /
    • pp.3-10
    • /
    • 2020
  • This study is aimed at investigating drivers' reactions to yellow signal dilemma situations as a result of the existing signal system, and developing a new signal system. A driver-centered coping model was developed through bio-signal analysis. The driver's physiological response in the existing signal system was observed, and the signal system was developed by applying intersection road driving conditions using a car graphic simulator. Participants were classified into a control group (existing signal system) and an experimental group for a new yellow signal system (new signal system). Based on the results, the emergence of parasympathetic nerves was higher in the experimental group than in the control group, where a statistically significant difference was observed (p < 0.05). The newly developed signal system appeared to cause tension among drivers; however, the sympathetic to parasympathetic nerve ratio was 6: 4, which could be interpreted as an ideal balance. We conclude that drivers can drive more stably if the coping signal system developed in this study is applied to the traffic system.

A Study on the Calculation of Dynamic Yellow Signal Time Based on Approach Speed and Collision Points (접근속도와 상충지점 기반 동적황색신호시간 산정 연구)

  • Hyunho Son;Sanghoon Sung;Choulki Lee;Hyeon Soo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.14-34
    • /
    • 2023
  • The purpose of this study was to calculate the appropriate yellow-signal time for intersections, to find out the relationship between the approach speed and intersection width when calculating the time, and to secure safety by minimizing conflicts and dilemma sections in intersections that change according to the signal operation. For this purpose, 6,824 data points from 5 intersections were collected and analyzed. The main results of the study are as follows. First, the approach speed of individual vehicles in different lanes was analyzed, and the width of an intersection was defined by considering the conflict in each direction. Second, we developed a multiple regression model based on the approach speed and conflict points, which compensated for the problems of an existing formula. Third, a standard table is presented for applying the appropriate yellow-signal time according to the approach speed and intersection width based on a development formula. A method is also presented to determine the safety of the length of the dilemma according to the change in the yellow-light time by presenting a calculation table that can cross-analyze the yellow-signal time and a dilemma section using the relationship.

Driving Behavior Characteristics under Red Right Camera Enforcement at Signalized Intersections (신호교차로에서 무인교통단속 규제에 따른 주행 특성)

  • Han, Myungjoo;Lee, Soongbong;Kim, Hyeweon;Lee, YoungIhn;Kim, Sangok
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.63-73
    • /
    • 2016
  • PURPOSES : The objective of this study was to analyze variations in the vehicle driving behavior characteristics on signalized intersections according to the use of traffic enforcement camera (red light camera). METHODS : In order to analyze the driving behavior characteristics on signalized intersections when red light camera are installed, the target sites for investigation were selected depending on whether the red light camera is installed and accident rates increased after the installation. In particular, to analyze the characteristics of dilemma zones in signalized intersections, approach speed and deceleration speed of 3 type vehicles (passing vehicles during a yellow light, stopping at a yellow light, passing vehicles during a green light) were examined. Based on these data, the starting point, ending point, and distance of the dilemma zones were calculated. Also, the locations of increased traffic accidents and decreased accidents after the installation of the equipment were distinguished when analyzing the traffic accident characteristics. RESULTS : Analysis results revealed that there was a tendency for the dilemma zone distance to decrease after the installation of equipment(red light camera) in most sites. This tendency was found to be due to the decrease in the approaching speed of vehicles at intersections after the installation of equipment, resulting in the starting and ending points of dilemma zone to become closer to the stop line. Moreover, analysis showed that the number of traffic accidents decreased for most intersections after the installation of equipment and safety of the intersections increased somewhat. CONCLUSIONS : In general, installation of equipment(red light camera) caused the intersections approaching speed and dilemma zone distance to decrease. Decision-making is difficult for drivers in the dilemma zone, so the decrease in the dilemma zone distance implies an improvement in traffic safety. Furthermore, the number of accidents within intersections significantly decreased after the equipment was installed, leading to the conclusion that installation of the equipment affected the decrease in traffic accidents.

Analysis on Intersection Traffic Signal Locations Change and Characteristics of Dilemma Zone (교차로 신호기 위치 조정과 딜레마존 특성 분석)

  • Lim, Sam Jin;Lee, Young-Ihn;Kim, Kyung Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.3-13
    • /
    • 2013
  • This paper reviews the characteristics of dilemma zone by analysing the influence exerted by actual location of intersection traffic signal on behaviour of drivers approaching signalized intersection in urban area. The analysis of approach speed was based upon a 'before and after' comparison, measured at three sites where the locations of traffic signals were changed. The study demonstrated that, when traffic signal changed to yellow, the scales of dilemma zone were narrowed in case of stopping cars by moving up the starting point of the dilemma zone due to lowered spot speed. On the other hand, in case of passing cars, the end points of dilemma zone were moved further out to the rear due to increased spot speed. Therefore, changing traffic signal locations could make an impact to increase intersection safety through reducing the scales of dilemma zone. This study also found that, in cases involving vehicles with similar approach speeds, spot speeds could be differentiated following the change of signal locations due to the fact that there can be greater differences in both braking point and deceleration rate. Thus, when considering the appropriate measuring of dilemma zone, 'spot speed' rather than 'approach speed' appeared to be more appropriate criterion.

A Study on Driver Behavior and Dilemma Zone during Yellow Interval at Signalized Intersections (신호교차로 황색현시에서의 운전자 형태 및 딜레마 구간 연구방안)

  • 이승환;이성호;박주남
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.7-16
    • /
    • 2003
  • Objective of this research is to analyze drivers' behaviors at signalized intersection during yellow interval. For this, deceleration rate of stopping, PRT(Perception-Response Time), and the relationship between dilemma zone and deceleration rate of stopping were surveyed at two signalized intersections located at urban area(Songtan and Suwon) and local area(Yongin) As a result, the deceleration rate of stopping at signalized intersections and a range of dilemma zone were estimated. It was found that the deceleration rate of stopping and PRT were 1.6m/sec$^2$ and 1.27sec, respectively. These values are bigger than ITE's values which have been used in our country. Accordingly, it is considered that these values should be used as a new design criteria for the traffic signal control.

The CNS Responses of Elderly Driver due to Signal Types at the Intersection: Focused on Yellow Interval Dilemma Situation (교차로 상황에 따른 고령운전자의 중추신경계 반응: 황색신호 딜레마를 중심으로)

  • Lee, Young-Chang;Kim, Bo-Seong;Kim, Hyun-Woo;Lim, Dong-Hoon;Bak, Mi-Seon;Min, Byung-Chan;Min, Yoon-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.783-788
    • /
    • 2010
  • This study was to examine to the CNS(Central Nervous System) responses of elderly drivers at the green, yellow, and red signal types. To examine this result, the older adults over age 65 who has more than 5 years of driving experience participated this experiment. In addition, we used audio-visual film clips as the stimulus than driving simulator, because the CNS reponses are sensitive to movement such as steering wheel. While subjects were watching one car's driving among green, yellow, or red signal types at the intersection, we measured their EEG(electroencephalogram) using monopolar electrodes from Fz, Cz and Pz sites. As a result, relative sizes of beta waves were changed due to the signal type conditions, and pre- and post-time of entering the intersection at the measured sites, separately. It suggests that the elderly drivers' CNS responses were different by the signal types.

In-vehicle Dilemma Zone Warning System at Signalized Intersections (신호교차로 내 딜레마구간 차내경고시스뎀 개발)

  • Moon Young-Jun;Lee Joo-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.53-62
    • /
    • 2003
  • This paper demonstrates the in-vehicle dilemma zone warning system (DZWS) project developed as a part of the Driver Advisory and Collision Warning System in Automated Vehicle and Highway System (AVHS). The DZWS project, one of the Korea national ITS projects in 2000 develops the in-vehicle warning device to support drivers' decision making on whether to stop or to proceed to clear the intersection prior to the onset of yellow signal for avoiding the high risk of collision at signalized intersections through the dedicated short range communication (DSRC). This paper explores the design of optimal communication systems between roadway and vehicles, the operational and functional concepts of dilemma zone warning system based on appropriate approach speeds, and the system integration for field test at two sites of signalized intersections. Findings from the system integration indicated that the system would be implemented in eliminating the dilemma zone relative to approach speeds and in reducing red light violations and intersection collisions through the in-vehicle warning device at signalized intersection.

  • PDF