• Title/Summary/Keyword: Yellow emission

Search Result 165, Processing Time 0.026 seconds

Micronization of Ceramic Pigments for Digital Ink-Jet Printing Process (디지털 프린팅 공정을 위한 세라믹 안료의 미립화 거동 분석)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kwon, Jong-Woo;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE $L^{\ast}a^{\ast}b^{\ast}$.

A Study on Water-soluble Components in the Dustfall Matter at Cheju and Ullung Island (제주도와 울릉도의 강하분진중 수용성 성분에 관한 연구)

  • Choi, Jae-Cheon;Kim, San;Lee, Min-Young;Lee, Sun-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.331-337
    • /
    • 1995
  • This study was carried out to investigate the chemical composition of dustfall at Cheju(mean sea level; 71.7m, 33$^{\circ}$17'N, 126$^{\circ}$10'E) and Ullung island(mean sea level; 22.1m, 38$^{\circ}$29'N, 130$^{\circ}$54'E) from October 1993 to september 1994. The dustfall matter samples were collected by deposit gauges. The ionic components of each samples was analyzed by Ion Chromatograpy (Dionex 4000i), While heavy metals by Inductively Coupled Plasma Atomic Emission Spectrometry(ICP/AES; Shimadzu ICP-4). The results for seasonal variation of dustfall matter matter total amount, water-soluble ionic components and water-soluble ionic components total deposition amount to two sites were compared each other. The seasonal variations of dustfall amount at Ullung and Cheju island were found in order of Spring>Winter>Fall>Summer, and the maximum of dustfall amount were during the Yellow Sand period. Also, Total amount of water-soluble components except for $F^{[-10]}$ were high in Cheju more than Ullung island.more than Ullung island.

  • PDF

Effect of Solution Properties on Luminance Characteristics of YAG:Ce Phosphors Prepared by Spray Pyrolysis (분무열분해법으로 YAG:Ce 제조시 용액 조건이 발광특성에 미치는 영향)

  • Lee, You-Mi;Kang, Tae-Won;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.220-225
    • /
    • 2012
  • YAG:Ce yellow phosphor particles were synthesized by spray pyrolysis with changing the solution properties and their luminous properties, crystal structure, and morphological changes were studied by using PL measurement, XRD, and SEM analysis. It was clear that the solution properties significantly affected the crystal phase, crystallite size, the PL intensity, and the morphology of YAG:Ce particles. At low calcination temperature, the addition of urea only to the spray solution was helpful to form a pure YAG phase without any impurity phases, as the result, the highest luminescence intensity was achieved at the calcination temperature of $900^{\circ}C$. When the calcination temperatures were larger than $1300^{\circ}C$, however, the YAG particles prepared without any additive showed the highest luminescent intensity. Regardless of the solution conditions, the emission intensity of YAG:Ce particles prepared by spray pyrolysis showed a linear relation with the crystallite size. In terms of the morphology of YAG:Ce particles, the addition of both DCCA and $NH_4OH$ to the spray solution was effective to prepare a spherical and dense structured YAG particles.

A simple one Step Thermochemical Approach for Synthesis of ZnS:Mn Nanocrystals (NCs)

  • Molaei, Mehdi;Lotfiani, Ahmad;Karimimaskon, Fatemeh;Karimipour, Masoud;Khanzadeh, Mohammd
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.92-95
    • /
    • 2014
  • In this work we have synthesized ZnS:Mn nanocrystals (NCs) using a simple one step thermochemical method. $Zn(NO_3)_2$ and $Na_2S_2O_3$ were used as the precursors and $Mn(NO_3)_2$ was the source of impurity. Thioglycolic acid (TGA) was used as the capping agent and the catalyst of the reaction. The structure and optical property of the NCs were characterized by means of X- ray diffraction (XRD), HRTEM, UV-visible optical spectroscopy and photoluminescence (PL). X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses demonstrated cubic phase ZnS:Mn NCs with an average size around 3 nm. Synthesized NCs exhibited band gap of about 4 eV. Photoluminescence spectra showed a yellow-orange emission with a peak located at 585 nm, demonstrating the Mn incorporation inside the ZnS particles.

A STUDY ON THE COLOR CHANCE OF CERAMIC BY Pd-Ag ALLOY AND MECHANISM (팔라디움-은합금에 의한 도재의 색조변화 및 변색작용에 관한 연구)

  • Youn, Soo-Sun;Lee, Sun-Hyung;Yang, Jae-Ho;Chong, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.123-141
    • /
    • 1989
  • The purpose of this study was to investigate the tendency of color change of ceramic, and its mechanism un der the influence of Pd-Ag alloy. The specimens were made by firing porcelain on tile metal plates cast with Au-Pt alloy, Pd-Cu alloy and Pd-Ag alloy. In the case of Pd-Ag alloy, specimens were fired under three different conditions as follows, 1) without protection, 2) protection with ceramic metal conditioner, 3) protection with carbon block. For the specimens of element analysis, a barrier was constructed with platinum foil between metal plate and ceramic. Color change was measured with colorimeter and elemental changes in ceramic were calculated with DC argon plasma emission spectrophotometer. The results were as follows : 1. Color change of ceramic by Pd-Ag alloy was negligible in hue, but decreased in value and increased in chroma (yellow discoloration). 2. Color change of ceramic by Pd-Ag alloy was appeared through vapor transport mechanism. 3. As the protection method for the color change of ceramic by Pd-Ag alloy, application of ceramic metal conditioner was superior to utilization of carbon block.

  • PDF

Enhancement in solar cell efficiency by luminescent down-shifting layers

  • Ahmed, Hind A.;Walshe, James;Kennedy, Manus;Confrey, Thomas;Doran, John;McCormack, Sarah.J.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.117-126
    • /
    • 2013
  • In this paper, core-shell semiconductor quantum dots (QDs) CdSeS/ZnS with emission at 490 nm and 450 nm were investigated for their use in luminescent down-shifting (LDS) layers. Luminescent quantum yield (LQY) of the QDs measurements in solution proposed that they were suitable candidates for inclusion in LDS layers. QDs were encapsulated in poly(methyl,methacrylate) (PMMA) polymer matrix and films were fabricated of $134{\pm}0.05$ microns. Selections of organic dyes from BASF Lumogen F range were also investigated for their use as LDS layers; Violet 570 and Yellow 083. The addition of LDS layers containing Violet 570 dye demonstrated a unity LQY when encapsulated within a PMMA matrix. A PV device of an LDS layer of Lumogen Violet 570 deposited on top of a crystalline silicon cell was fabricated where it was demonstrated to increase the efficiency of the cell by 34.5% relative.

Properties of Y3Al5O12:Ce3+,Pr3+ Single Crystal for White Laser Lightings (백색 레이저 조명용 Y3Al5O12:Ce3+,Pr3+ 단결정 특성)

  • Kang, Taewook;Lim, Seokgyu;Kim, Jongsu;Lee, Bong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.37-41
    • /
    • 2018
  • $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was prepared by floating zone method. single crystal was confirmed to have a Ia-3d (230) space group of cubic structure and showed regular morphology. The optical properties, single crystal exhibited a emission band from green, yellow wide wavelength and 610nm, 640nm red wavelength vicinity. The luminance maintenance rate was decreased by phonon with increasing temperature, but high luminance is maintained more than powder phosphor. In addition, $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was applied to a high power blue laser diode, we implemented high power white laser lightings. and it was confirmed that thermal properties over time, due to the effective heat transfer of complete crystal structure. We confirmed that excellent radiant heat properties than powder phosphor was applied to a high power white laser diode.

Synthesis and Luminescence of Sr2Si5N8:Eu2+ Red Phosphor for High Color-Rendering White LED (고연색 LED용 적색 Sr2Si5N8:Eu2+ 형광체의 합성 및 발광특성 연구)

  • Lee, Sung Hoon;Kim, Jong Su;Kang, Tae Wook;Ryu, Jong Ho;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.11-15
    • /
    • 2017
  • Red phosphors, $Sr_2Si_5N_8:Eu^{2+}$, were synthesized as a single-phase crystal structure by optimizing carbon and $Eu^{2+}$ contents in a carbothermal reduction nitridation method. With increasing $Eu^{2+}$ contents, the photoluminescence spectra were red-shifted from 600 nm peak for 1 mol% for to 700 nm for 7 mol%. It was suggested that this red shift is attributed to the energy transfer from one low-energy sited $Eu^{2+}$ (1) to other high-energy sited $Eu^{2+}$ (2). Finally, the best red sample (620 nm emission peak and 80 nm half width for 3 mole% of $Eu^{2+}$) was packaged on a Blue LED together with two additional green and yellow phosphors, the fabricated White LED showed a high color-rendering index of 90 and white color coordinates of x= 0.321 and y = 0.305.

  • PDF

Prepration and Properties of Blue Tungsten Oxide Nanopowders by High Energy Ball-Mill (고 에너지 볼밀을 이용한 Blue 텅스텐산화물 나노입자의 제조와 특성)

  • Kim, Myung-Jae;Lee, Kwang-Seok;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • The purpose of this study is to prepare WO3 nanopowders by high-energy milling in mixture gas (7 % H2+Ar) with various milling times (10, 30, and 60 min). The phase transformation, particle size and light absorption properties of WO3 nanopowders during reduction via high-energy milling are studied. It is found that the particle size of the WO3 decreases from about 30 ㎛ to 20 nm, and the grain size of WO3 decreases rapidly with increasing milling time. Furthermore, the surface of the particles due to the pulverization process is observed to change to an amorphous structure. UV/Vis spectrophotometry shows that WO3 powder with increasing milling times (10, 30, 60 min) effectively extends the light absorption properties to the visible region. WO3 powder changes from yellow to gray and can be seen as a phenomenon in which the progress of the color changes to blue. The characterization of WO3 is performed by high resolution X-ray diffractometry, Field emission scanning electron microscopy, Transmission electron microscopy, UV/Vis spectrophotometry and Particle size analysis.

Distribution Characteristics of Dust and Heavy Metals in the Atmosphere Around the Steel Industrial Complex

  • Hye-jin Jo;Jong-Ho Kim;Byung-Hyun Shon
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.334-344
    • /
    • 2024
  • In Dangjin, Chungcheongnam-do, there are not only power plants and large steel complexes, but also small and medium-sized air pollutant emission facilities. The dust generated by these facilities has a very small particle size and a large surface area due to condensation and physical and chemical reactions, and is discharged containing various harmful substances. Therefore, this study analyzed the distribution of particulate matter and heavy metal concentrations by particle size in the vicinity of the steel complex, residential area, and reference point using an eight-stage Cascade Impactor. Overall, the direct impact sites with a short distance from the steel complex had the highest concentration, followed by the indirect impact sites, and the non-impact sites had the lowest concentration, indicating that they are directly affected by the steel complex. The atmospheric dust concentration distribution showed a bimodal distribution with a minimum value around the 1.1 to 2.1 ㎛ particle diameter. However, during the yellow dust event, the maximum concentration was biased toward coarse particles. The proportion of PM2.5 in the dust tended to be higher in winter, while the ratio between PM2.5 and PM10 was relatively higher in spring. Regardless of the location of the impact point, heavy metals in the dust were dominated by iron and aluminum, followed by zinc, lead, and manganese.