Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.1.23

Prepration and Properties of Blue Tungsten Oxide Nanopowders by High Energy Ball-Mill  

Kim, Myung-Jae (Department of Organic Material & Fiber Engineering, Soongsil University)
Lee, Kwang-Seok (Department of Advanced Materials Engineering, Kangwon National University)
Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University)
Publication Information
Korean Journal of Materials Research / v.31, no.1, 2021 , pp. 23-28 More about this Journal
Abstract
The purpose of this study is to prepare WO3 nanopowders by high-energy milling in mixture gas (7 % H2+Ar) with various milling times (10, 30, and 60 min). The phase transformation, particle size and light absorption properties of WO3 nanopowders during reduction via high-energy milling are studied. It is found that the particle size of the WO3 decreases from about 30 ㎛ to 20 nm, and the grain size of WO3 decreases rapidly with increasing milling time. Furthermore, the surface of the particles due to the pulverization process is observed to change to an amorphous structure. UV/Vis spectrophotometry shows that WO3 powder with increasing milling times (10, 30, 60 min) effectively extends the light absorption properties to the visible region. WO3 powder changes from yellow to gray and can be seen as a phenomenon in which the progress of the color changes to blue. The characterization of WO3 is performed by high resolution X-ray diffractometry, Field emission scanning electron microscopy, Transmission electron microscopy, UV/Vis spectrophotometry and Particle size analysis.
Keywords
blue tungsten oxide; high energy ball milling; nanopowder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Baetens, B. P. Jelle and A. Gustavsen, Sol. Energy Mater. Sol. Cells, 94, 87 (2010).   DOI
2 M. Barawi, L. D. Trizio, R. Giannuzzi, G. Veramonti, L. Manna and M. Manca, ACS Nano, 11, 3576 (2017).   DOI
3 H. Long, W. Zeng and H. Zhang, J. Mater. Sci. Mater. Electron., 26, 4698 (2015).   DOI
4 K. R. Locherer, J. Chrosch and E. K. H. Salje, Phase Transitions, 67, 51 (1998).   DOI
5 R. Hurditch, Electrocomp. Sci. Tech., 3, 247 (1997).   DOI
6 C. J. Howard, V. Lica and K. S. Knight, J. Phys.: Condens. Matter, 14, 377 (2002).   DOI
7 M. C. Pantilimon, T. S. Kang and S. J. Lee, Sci. Adv. Mater., 9, 280 (2017).   DOI
8 K. Hong, W. Yiu, H. Wu, J. Gao and M. Xie, Nanotechnology, 16, 1608 (2005).   DOI
9 A. A. Mohammad, Acta Phys. Pol. A, 116, 240 (2009).   DOI
10 D. L. Zhang, Prog. Mater. Sci., 49, 537 (2004).   DOI
11 H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall. Trans. A., 21, 2333 (1990).   DOI
12 B. D. Hall, D. Zanchet and D. Ugarte, J. Appl. Cryst. 33, 1335 (2000).   DOI
13 D. T. Gillaspie, R. C. Tenent and C. Dillon, J. Mater. Chem., 20, 9585 (2010).   DOI
14 Y. Huang, J. Q. Dai, Z. P. Xie, T. Ma, J. L. Yang and J. T. Ma, J. Eur. Ceram. Soc., 23, 985 (2003).   DOI
15 V. Sepelak and K. D. Becker, J. Korean Ceram. Soc., 49, 19 (2012).   DOI
16 Y. Li, D. Chen and R. A. Caruso, J. Mater. Chem. C, 4, 10500 (2016).   DOI
17 H. Takeda and K. Adachi, J. Am. Ceram. Soc., 90, 4059 (2007).
18 A. Ikehata, T. Itoh and Y. Ozaki, Anal. Chem., 76, 6461 (2004).   DOI