DOI QR코드

DOI QR Code

A simple one Step Thermochemical Approach for Synthesis of ZnS:Mn Nanocrystals (NCs)

  • Received : 2013.05.07
  • Accepted : 2013.12.11
  • Published : 2014.02.28

Abstract

In this work we have synthesized ZnS:Mn nanocrystals (NCs) using a simple one step thermochemical method. $Zn(NO_3)_2$ and $Na_2S_2O_3$ were used as the precursors and $Mn(NO_3)_2$ was the source of impurity. Thioglycolic acid (TGA) was used as the capping agent and the catalyst of the reaction. The structure and optical property of the NCs were characterized by means of X- ray diffraction (XRD), HRTEM, UV-visible optical spectroscopy and photoluminescence (PL). X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses demonstrated cubic phase ZnS:Mn NCs with an average size around 3 nm. Synthesized NCs exhibited band gap of about 4 eV. Photoluminescence spectra showed a yellow-orange emission with a peak located at 585 nm, demonstrating the Mn incorporation inside the ZnS particles.

Keywords

References

  1. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovi, Nano Lett. 7 (2007) 2196. https://doi.org/10.1021/nl0703424
  2. A. P. Alivisato, Science 271 (1996) 933. https://doi.org/10.1126/science.271.5251.933
  3. M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H. D. Sun and X.W. Sun, J. Lumin. 132 (2012) 467. https://doi.org/10.1016/j.jlumin.2011.08.038
  4. M. Molaei, E. Saievar Iranizad, Z. Dehghani, N. Taghavinia and M. H. Majlesara, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano- Metal Chemistry 41 (2011).
  5. G. Hajisalem, M. Marandi, N. Taghavinia and M. Houshiar, Nanotechnology 20 (2009) 095706. https://doi.org/10.1088/0957-4484/20/9/095706
  6. A. Tiwari, S. A. Khan, R. S. Kher, J. Lumin. 132 (2012) 1564. https://doi.org/10.1016/j.jlumin.2012.01.036
  7. M. Molaei, J. Lumin. 136 (2013) 38. https://doi.org/10.1016/j.jlumin.2012.11.014
  8. R. Mach, G. Muller, J. Cryst. Growth 86 (1988) 866. https://doi.org/10.1016/0022-0248(90)90816-4
  9. T. Yamaguchi, Y. Yamamoto, T. Tanaka, A. Yoshida, Thin Solid Films 344 (1999) 516
  10. D. Amaranatha Reddy, G. Murali, B. Poornaprakash, R. P. Vijayalakshmi , B. K. Reddy, Solid State Commun. 152 (2012) 596. https://doi.org/10.1016/j.ssc.2012.01.023
  11. V. Stanic, T.H. Etsell, A.C. Pierre, Mater. Lett. 31 (1997) 35. https://doi.org/10.1016/S0167-577X(96)00237-6
  12. T.A. Guiton, C.L. Czekai, C.G. Pantano, J. Non-Cryst. Solids 121 (1990) 7. https://doi.org/10.1016/0022-3093(90)90095-4
  13. T. Hanaoka, T. Taqo, M. Kishida, Bull. Chem. Soc. Jpn. 74 (2001) 1349. https://doi.org/10.1246/bcsj.74.1349
  14. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett. 72 (1994) 416. https://doi.org/10.1103/PhysRevLett.72.416
  15. S.J. Xu, S.J. Chua, B. Liu, L.M. Gan, C.H. Chew, G.Q. Xu, Appl. Phys. Lett. 73 (1998) 478. https://doi.org/10.1063/1.121906
  16. L. X. Cao, J. H. Zhang, S.L. Ren, S.H. Huang, Appl. Phys. Lett. 80 (2002) 4300. https://doi.org/10.1063/1.1483113
  17. P. E. Lippens and M. Lanno , Phys. Rev. B 39 (1989) 10935. https://doi.org/10.1103/PhysRevB.39.10935
  18. R. Maity, K. K. Chattopadhyay, Nanotechnology 15 (2004) 812. https://doi.org/10.1088/0957-4484/15/7/017
  19. A. A. Khosravi, M. Kundu, B. A. Kuruvilla, G. S. Shekhawat, R.P. Gupta, A. K. Sharma, P.D. Vyas, S.K. Kulkarni, Appl. Phys. Lett. 67 (1995) 2506. https://doi.org/10.1063/1.114440
  20. J. Leeb, V. Gebhardt, G. Muller, D. Haarer, D. Su, M. McMahon, L. Spanhel, J. Phys. Chem. B 103 (1999) 7839 https://doi.org/10.1021/jp991514r
  21. W.Q. Peng, S.C. Qu, G.W. Cong, X.Q. Zhang, Z.G. Wang, J. Cryst. Growth 282 (2005) 179. https://doi.org/10.1016/j.jcrysgro.2005.05.005
  22. Q. Xiao, C. Xiao, J. Appl. Surf. Sci. 254 (2008) 6432 https://doi.org/10.1016/j.apsusc.2008.04.002