• Title/Summary/Keyword: Yellow River silt

Search Result 11, Processing Time 0.025 seconds

Study on mechanical properties of Yellow River silt solidified by MICP technology

  • Yuke, Wang;Rui, Jiang;Gan, Wang;Meiju, Jiao
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2023
  • With the development of infrastructure, there is a critical shortage of filling materials all over the word. However, a large amount of silt accumulated in the lower reaches of the Yellow River is treated as waste every year, which will cause environmental pollution and waste of resources. Microbial induced calcium carbonate precipitation (MICP) technology, with the advantage of efficient, economical and environmentally friendly protection, is selected to solidify the abandoned Yellow River silt with poor mechanical properties into high-quality filling material in this paper. Based on unconfined compressive strength (UCS) test, determination of calcium carbonate (CaCO3) content and scanning electron microscope (SEM) test, the effects of cementation solution concentration, treatment times and relative density on the solidification effect were studied. The results show that the loose silt particles can be effectively solidified together into filling material with excellent mechanical properties through MICP technology. The concentration of cementation solution have a significant impact on the solidification effect, and the reasonable concentration of cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 2.5 MPa with a relatively high CaCO3 content of 26%. With the improvement of treatment degree, the influence of relative density on the UCS increases gradually. Microscopic analysis revealed that after MICP reinforcement, CaCO3 adhered to the surface of soil particles and cemented with each other to form a dense structure.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

The distribution characteristics of Sb and As in the surface sediment from the Yellow Sea and the coastal areas of Korea (황해와 한국연안해역 표층퇴적물중 Sb과 As의 농도분포특성)

  • ;Jingyun Han
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1121-1129
    • /
    • 2003
  • We report the distributions of Sb and As in the surface sediment of the Yellow Sea and the coastal areas of Korea. The mean concentrations of Sb and As range from 0.68 ppm to 1.01 ppm and from 7.4 ppm to 15.8 ppm, respectively, and show relatively the high concentrations at the coast of Weolseong in the East Sea for Sb and at the coast of Gadeok Island in the South Sea far As. This may be due to the anthropogenic input of these elements via river and atmosphere from industry complex and agriculture regions around the study areas. Because of the difference of clay to silt proportion, the correlation between silt plus clay contents and Sb, As in the coastal surface sediment of Korea is not shown, the concentrations of Sb and As vary widely for the sample in which the silt plus clay contents are the same. Therefore, we suggest that the distribution patterns of Sb and As in surface sediment of the Yellow Sea and the coastal areas of Korea are mainly controlled by the anthropogenic inputs and the sediment characteristics. On the other hand, the Sb concentrations are lower than those of the lowest effect level which is the standard of judgment for contamination, while the As concentrations are higher than those of the lowest effect level. This implies that the surface sediments of the Yellow Sea and the coastal areas of Korea are considerably contaminated for As.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Rare earth element geochemistry of shelf sediments in the western part of Jeju Island, korea

  • Youn, Jeung-Su;Kim, Tae-Joung
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.58-58
    • /
    • 2010
  • The sediment geochemistry, including REE of surface and core samples in the western part off Jeju Island have been carried out in order to understand the provenance and hydrolic sorting. The sediment in the study area were primarily composed of coarse silt with a mean grain size of $2.8{\sim}82.8{\mu}m$. The ratios of TOC over total nitrogen (TN) showed that the study area sediments contained more organic matters of marine origin than those of terrigenous origin. The total A1203, Fe203, K20, MgO, and MnO contents and REE concentration of the fine sediments are higher than those of the coarse sediments. The higher Zr/Th and Zr/Yb ratios in coarse sediments relative to fine-grained detritus indicates sedimentary sorting. Grain size influence the REE concentrations of the study area sediment significantly. The < $63{\mu}m$ fraction of the sediment has higher REE concentration and different REE patterns when compared with those in bulk samples, due to the presence of REE-enrich heavy minerals. The REE distribution patterns of the western part of Jeju Island sediments are relatively enriched in most LREEs than the Yellow River sediment and depleted in the Changjiang River, but the LaN/YbN ratios are similar to the Changjiang sediment. The Eu/Eu* ratios ranged from 0.594~0.665(0.631) is much similar to the Yellow River sediment, possibly mixture of the sediments from these two rivers.

  • PDF

Physical properties of Southeastern Yellow Sea Mud (SEYSM): Comparison with the East Sea and the South Sea mudbelts of Korea (황해 남동부 니질대의 물리적 성질: 동해 및 남해 니질대와의 비교)

  • Kim, Dae-Choul;Kim, Shin-Jeong;Seo, Young-Kyo;Jung, Ja-Hun;Kim, Yang-Eun;Kim, Gil-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.335-345
    • /
    • 2000
  • Physical and acoustic properties of the Southeastern Yellow Sea Mud (SEYSM) of Korea were studied by using 10 piston cores. The data were also compared with mudbelt sediments in the South Sea and the East Sea (southeastern inner shelf) of Korea. The sediments were mainly composed of homogeneous silt. Sandy mud and mud were minor components. The major source of sediment in the study area is probably the Keum River. Finegrained sediments discharged from the river are transported southward by coastal current, resulting in a gradual southward increase in porosity and a decrease in wet bulk density and sound velocity. The mean grain size especially appears to be the most important variable to determine the physical properties and velocity. The variations of physical properties with burial depth are dependent more strongly on sediment texture (especially, silt content) than compaction and/or consolidation. Correlations between the physical properties and the sediment texture show slight deviations from those of the East Sea and the South Sea of Korea in spite of similar pattern within the limiting values. This is probably due to the differences in silt contents, sedimentary environments, mineral compositions, and gas contents.

  • PDF

The Role of the Sedimentary Deposits (silt line) from Rivers Flowing into the Sea in the Yellow Sea Maritime Boundary (강의 퇴적물과 황해 경계획정 적용가능성에 관한 연구)

  • Yang, Hee-Cheol
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.31-50
    • /
    • 2009
  • The demarcation of Maritime Boundary is directly related to the expansion of jurisdiction and the securing of resources. Resource diplomacies of the three countries Korea, China and Japan represent a major task for the national administrations : to secure resources as well as to stablize and sustain resources for future national economies. At the sea area around Korea as well, countries are fiercely competing to secure resources and to expand jurisdiction. This is evidenced by the fact that various principles and logics which are beneficial to each own country are presented through international precedents, agreement between countries and the theories of the international law scholars. They say that the conclusion of demarcation of maritime boundary for the Yellow Sea would be easy from the point that there is no dispute related to island dominion in the waters of the Korean Peninsula especially the Yellow Sea, but still we need to have a strategic approach to this issue from the point that the factors used for claiming maritime boundaries may expand the waters of a country over much. For example, the continental shelf boundary in consideration of the distribution of sedimentary deposits in the Yellow Sea which is being raised by China began from the hypothesis that the inflow of sedimentary deposits to the Yellow Sea through the rivers of China represents absolute majority, but the results of the latest studies raised questions on the hypothesis. Especially, the studies done by Martin and Yang revealed that the inflow of sedimentary deposits to the Yellow Sea from the Yellow River is approximately less than 1% of total sedimentary deposits in the Yellow Sea, and also the result of analysis on the causes and counter policy measures on the environment of Bohai, China supports the reliability of the results of such studies. From a legal aspect, the sedimentary deposits of rivers which are claimed by China represent extremely weak ground for the claim for the title of the continental shelf. The siltline claimed by China seems to be based on the Article 76-4-(a)(i) of UNCLOS. This is, however, not the definition on the title of the continental shelf but it is only a technical formula to utilize in a case where a country desires to expand the continental shelf to over 200 nautical miles. Scientific and Technical Guidelines of the Commission on the Limits of the Continental Shelf also confirm this point through the Article 2.1.2 of the Guideline. The only case in which sedimentary deposits of rivers were referred to as concrete demarcation of maritime boundary was in the which was concluded in 1986 between India and Myanmar at the Andaman Sea. In the said case, India acknowledged the boundary up to the isobath of 200m which Myanmar claimed based on the sedimentary deposits of the Irrawaddy River. It has limits as a case for acknowledging the sedimentary deposits, however, because in fact India's acknowledgment was made in exchange for the condition that Myanmar gave up the dominion of two islands which they had been claiming from India up until that time.

A Grain Size Analysis of Bottom Sediments of Yeongil Bay, Korea (한국 영일만 해저퇴적물의 입도분포)

  • Park, Byong-Kwon;Song Moo-Young
    • 한국해양학회지
    • /
    • v.7 no.2
    • /
    • pp.74-85
    • /
    • 1972
  • This paper studied the grain size distribution of bottom sediments of Yeongil Bay which is located at the southeastern part of the Korean Peninsula. Sixty four samples collected with snapper and dredger are analyzed by roe Tap Sieve Shaker and Pipette Method. The moment parameters are calculated with the method of Friedman(1961). Most samples are composed of sand size sediments and a few samples are composed of silt and clay. The Yeongil Bay can be divided into gravel-granule zone, sand zone, and silt-clay zone. The sediments near Yeonam- Dong and Hyongsan river are moderately sorted and others are very poorly sorted according to scheme of Friedman91962). In general, sorting values are ranged from 1.0 to 3.5. The samples near Janggigap and Masin-Dong show negative and others show positive skewness values. Skewness values are ranged from -1 to 2. All samples show the leptokurtic distribution except for the samples near Masin- dong and at the deepest place near Janggigap. Kurtosis values are ranged from -1.5 to 21.9. The samples of gravel-granule zone contain more than 50% and those of silt-clay zone contain less than 50% of CaCO$\_$3/. Four different colors, black, yellow, brown and gray, are shown in the sediments of Yeongil Bay.

  • PDF

Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea (황해 남동부 흑산니질대 퇴적물의 분포, 지화학적 조성 및 퇴적물 기원지)

  • Ha, Hun Jun;Chun, Seung Soo;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.289-302
    • /
    • 2013
  • In order to determine the provenance of the Huksan Mud Belt sediments in the southeastern Yellow Sea, the major and rare earth elements of the same sediments were analyzed. The surface sediments were sampled from top of piston-cores and box-cores taken at 51 sites within the Huksan Mud Belt. With the mean grain size of $5-6{\phi}$, the sediments of the study area are mud-dominated. The spatial distribution patterns show that silt content is high in the northern Mud Belt, whereas clay content increases as it moves toward the southern Mud Belt. Interestingly, the geochemical compositions both of major and rare earth elements have resulted in differences of sediment provenance. Among the major elements, plots of Fe/Al vs. Mg/Al ratios, $Al_2O_3$ vs. MgO ratios, and $Al_2O_3$ vs. $K_2O$ reveal that the Huksan Mud Belt sediments are dominated by the Korean river-derived sediments. However, the characteristics of rare earth elements infer sediments originating from the Chinese rivers. This discrepancy between the above provenances is attributed to the different contributory factors in the content of chemical elements. Considering strong correlation between major elements with grain sizes, the contents of the major elements are thought to be influenced by the grain size. However, there is a weak correlation between rare earth elements and grain sizes. The behaviour of rare earth elements may be controlled by heavy minerals, rather than grain sizes. Further study requires to solve the discrepancy arose from the difference in applied chemical tracers.

Consideration of Physical and Compression Characteristics among Western and Southern Coastal Marine Clays - Incheon·Mokpo·Gwangyang·Busan - (서·남해안 해성점토의 물리·압축특성 고찰 - 인천·목포·광양·부산 -)

  • Kim, Sangkwi;Yea, Geuguwen;Kim, Kilsu;Kim, Hongyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.43-51
    • /
    • 2011
  • Marine clays are widely distributed in Korean eastern, western and southern coastal areas. Understanding engineering characteristics of the soft ground is very important, whenever civil structures are constructed in those coastal areas. It is because the ground is composed of highly compressible marine clay. In this paper, the physical and compression characteristics of Incheon, Mokpo, Gwangyang and Busan marine clay were analyzed and the characteristics between western and southern coastal marine clays were compared. For this, test results of 1,471 samples from 114 sites were used. As a result, Incheon clay showed the lowest plasticity and the highest unit weight due to influx of silt from the Yellow River and the turn of the tide of Incheon area. However, Gwangyang clay showed highly compressible characteristic due to extensive reclamation. On the other hand, Mokpo and Busan clay showed partially similar levels of characteristics. The compression index of Mokpo and Busan clay was high more than twice in comparison with Incheon clay and that of Gwangyang clay was higher than seventy percents in comparison with Mokpo and Busan clay.