Browse > Article
http://dx.doi.org/10.5322/JES.2003.12.10.1121

The distribution characteristics of Sb and As in the surface sediment from the Yellow Sea and the coastal areas of Korea  

Jingyun Han (부경대학교 해양학과)
Publication Information
Journal of Environmental Science International / v.12, no.10, 2003 , pp. 1121-1129 More about this Journal
Abstract
We report the distributions of Sb and As in the surface sediment of the Yellow Sea and the coastal areas of Korea. The mean concentrations of Sb and As range from 0.68 ppm to 1.01 ppm and from 7.4 ppm to 15.8 ppm, respectively, and show relatively the high concentrations at the coast of Weolseong in the East Sea for Sb and at the coast of Gadeok Island in the South Sea far As. This may be due to the anthropogenic input of these elements via river and atmosphere from industry complex and agriculture regions around the study areas. Because of the difference of clay to silt proportion, the correlation between silt plus clay contents and Sb, As in the coastal surface sediment of Korea is not shown, the concentrations of Sb and As vary widely for the sample in which the silt plus clay contents are the same. Therefore, we suggest that the distribution patterns of Sb and As in surface sediment of the Yellow Sea and the coastal areas of Korea are mainly controlled by the anthropogenic inputs and the sediment characteristics. On the other hand, the Sb concentrations are lower than those of the lowest effect level which is the standard of judgment for contamination, while the As concentrations are higher than those of the lowest effect level. This implies that the surface sediments of the Yellow Sea and the coastal areas of Korea are considerably contaminated for As.
Keywords
Sb; As; Surface sediment; LEL (Lowest Effect Level);
Citations & Related Records
연도 인용수 순위
  • Reference
1 CCME, 2001, Canadian sediment quality guideline for the protection of aquatic life. Canadian Council of Ministers of the Environment, Winnipeg, 12pp
2 Long, E. R. and L. G. Morgan, 1990, The potential for biological effects of sediment-sorbed contaminants tested in the national states and trends program. National Oceanic Atmospheric Administration(NOAA) Technical Memorandum No.5, OMA52, NOAA National Ocean Service, Seattle, Washington, 175pp
3 Persaud, D., R. jaagumagi and A. Hayton, 1992, Guidances for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment, Queen's Printer for Ontario, 32pp
4 Park, S. C. and D. G. Yoo, 1988, Depositional history of Quanternary sediments on the continental shelf off the southeastern coast of Korea, Mar. Geol., 79, 65-75   DOI   ScienceOn
5 Mirlean, N., V. E. Andrus, P. Baisch, G. Griep and M. R. Casartelli, 2003, Arsenic pollution in Patos Lagoon estuarine sediments, Brazil, Mar. Poll. Bull., In press
6 Asami, T., M. Kubota and S. Saito, 1992, Simultaneous determination of antimony and bismuth in soils by continuous hydride generation-atomic absorption spectrometry, Water, Air, Soil Pollut., 62, 349-355   DOI
7 Choi, D. L., J. K. Oh, C. W. Lee and H. J. Woo, 1997, High-resolution seismic characteristics of the Holocene mud deposits in the southeast innershelf, Korea, The Sea-J Korea Soc. Oceanogr., 2, 8-13
8 Kim, G. Y., D. C. Kim, Y. K. Seo, S. C. Park, J. H. Choi and J. C. Kim, 1999, Physical properties of mudbelt sediments in the southeastern inner shelf of Korea, The Sea-J. Korea Soc. Oceanogr., 4, 338-348
9 Ainsworth, N., J. A. Cooke and M. S. Johnson, 1990, Distribution of antimony in contaminated grassland: I. Vegetation and soils, Environ. Pollut., 65, 65-77   DOI   ScienceOn
10 Grousset, F. E., C. R. Quetel, B. Thomas, O. F. X. Donard, C. E. Lambert, F. Guillard and A. Monaco, 1995, Anthropogenic vs. lithogenic origins of trace elements (As, Cd, Pb, Rb, Sb, Sc, Sn, Zn) in water column particles: northwestern Mediterranean Sea, Mar. Chem., 48, 291-310   DOI   ScienceOn
11 Francesconi, K. and J. Edmonds, 1997, Arsenic and marine organisms. Advan, Inorgan. Chem., 44, 147-189
12 DEC, 1991, Technical guidance for screening contaminated sediments. New York State Department of Environmental Conservation, New York, NY, 38pp
13 Martin, J. M. and M. Whitfield, 1983, The significance of the river input of chemical elements to the ocean, In: Tracer metals in seawater, edited by C. S. Wong, E. A. Royle. K. W. Bruland, J. D. Burton and E. D. Goldberg, Plenm, 265-296pp
14 Park, Y A. and B. K Khim, 1992, Origin and dispersal of recent clay minerals in the Yellow Sea, Mar. Geol., 104, 205-213   DOI   ScienceOn
15 Mok, W. M. and C. M. Wai, 1990, Distribution and mobilization of arsenic and antimony species in the Coeur D'Alene River, Idaho, Environ. Sci. Technol., 24, 102-108   DOI
16 Zhang, J, W. W. Huang, S. M. Liu, M. G. Liu, Q. Yu and J. H. Wang, 1992, Transport of particulate heavy metals towards the China Sea: a preliminary study and comparison, Mar. Chem., 40, 161-178   DOI   ScienceOn
17 Papakostidis, G., A. P. Grimanis, D. Zafiropoulos, G. B. Griggs and T. S. Hopkins, 1975, Heavy metlas in sediments from the Athens sewage outfall area, Mar. Pollut. Bull., 6, 136-139   DOI   ScienceOn
18 Grimanis, A. P., M. Vassilaki-Grimani and G. B. Griggs, 1977, Pollution studies of trace elements in sediments from the upper Saronikos Gulf, Greece, J. Radioanal. Chem., 37, 761-763   DOI
19 Ha, J. S., 2000, Sediment characteristics and depositional environment of the Nakdong River Estuary and adjacent coastal area, M. D. Thesis, Pukyong National University, Busan, 92pp
20 山重 隆, 1998, 大氣中 金屬元素分析法, 資源環境對策, 34, 1282-1288
21 Bettinelli, M., S. Spezia, U. Baroni and G. Bizzari, 1998, Microwave oven digestion of power plant emission and ICP-MS determination of trace elements, At. Spectrosc., 19, 73-79
22 Filella, M., N. Belzile and Y. W. Chen, 2002, Antimony in the environment; a review focused on natural waters I. Occurrence, Earth-Sci. Rev., 57, 125-176   DOI   ScienceOn
23 Ellwood, M. J. and W. A. Maher, 2003, Measurement of arsenic species in marine sediments by high-performance liquid chromatography inductively coupled plasma mass spectrometry, Anal. Chim. Acta., 477, 279-291   DOI   ScienceOn
24 Sullivan, K. A. and R. C. Aller, 1996, Diagenetic cycling of arsenic in Amazon shelf sediments, Geochim. Cosmochim Acta, 9, 1465-1477
25 Measures, C. J. and J. D. Burton, 1980, The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes, Earth Planet. Sci. Lett., 46, 385-396   DOI   ScienceOn
26 Mandal, B. K. and K. T. Suzuki, 2002, Arsenic round the world: a review, Talanta, 58, 201-235   DOI   ScienceOn
27 Smedley, P. L. and D. G. Kinniburgh, 2002, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17, 517-568   DOI   ScienceOn
28 Gebel, T., 1997, Arsenic and antimony: comparative approach on mechanistic toxicology, Chem.-Biol. Interact., 107, 131-144   DOI   ScienceOn
29 이동수, 1989, 대기를 통해 황해로 유입되는 오염물질의 부하량 측정에 관한 연구 ( I ), 한국해양연구소, 58pp
30 양동범, 1995, 황해의 해양오염조사 및 대책연구 (제1단계 3차년도 단계보고서), 한국해양연구소, 299pp
31 Choi, M. S., J. H. Chun, H. J. Woo and H. I. Yi, 1999, Change of heavy metals and sediment facies in surface sediments of the Shihwa Lake, J. Korean Environ. Sci. Soc., 8, 593-600   과학기술학회마을
32 Byrd, J. T., 1988, The seasonal cycle of arsenic in estuarine and nearshore waters of the South Atlantic Bight, Mar. Chem., 25, 383-394   DOI   ScienceOn
33 Michel, P., J. F. Chiffoleau, B. Averty, D. Auger and E. Chartier, 1999, High resolution profiles for arsenic in the Seine Estuary; Seasonal variations and net fluxes to the English Channel, Cont. Shelf Res., 19, 2041-2061   DOI   ScienceOn
34 Pierce, M. L. and C. B. Moore, 1982, Adsorption of arsenic and arsenate on amorphous iron hydroxide, Water Res., 16, 1247-1253   DOI   ScienceOn
35 Austin, L. S. and G. E. Millward, 1986, Atmosphere-coastal ocean fluxes of particulate arsenic and antimony, Cont. Shelf Res., 6, 459-474   DOI   ScienceOn
36 Scudlark, J. R. and T. M. Church, 1988, The atmospheric deposition of arsenic and association with acid precipitation, Atmo. Environ., 22, 937-943   DOI   ScienceOn
37 Gao, A. G., 1997, Element geochemistry of the sediment over an hydrothermally active area within the Middle Okinawa Trough, Yellow Sea Res., 7, 65-82
38 Whalley, C., S. Rowlatt, M. Bennett and D. Lovell, 1999, Total arsenic in sediments from the western North Sea and the Humber Estuary, Mar. Poll. Bull., 35, 394-400
39 Crecelius, E. A., 1975, The geochemical cycle of arsenic in Lake Washington and its relation to other elements, Lirnnol. Oceanogr., 20, 441-451   DOI
40 Zhao, Y. and M. Yan, 1994, Geochemistry of sediments of the China Shelf Seas, Science Press, 203pp
41 Leoni, L. and F. Sartori, 1997, Heavy metals and arsenic distributions in sediments of the Elba-Argentario Basin, southern Tuscany, Italy, Environ. Geol., 32, 83-92   DOI   ScienceOn
42 Shotyk, W., A. K. Cheburkin, P. G. Appleby, A. Fankhauser and J. D. Kramers, 1996, Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland, Earth Planet. Sci. Lett., 145, EI-E7
43 방극진, 1995, 환경오염.유해화학물질 편람, 성인당, 1025pp
44 Eskenazy, G. M., 1995, Geochemistry of arsenic and antimony in Bulgarian coals, Chem. Geol., 119, 239-254   DOI   ScienceOn
45 Cutter, G. A. and L. S. Cutter, 1995, Behavior of dissolved antimony, arsenic and selenium in the Atlantic Ocean, Mar. Chem., 49, 295-306   DOI   ScienceOn